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Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid

B. Doliwa1 and A. Heuer2
1Max Planck Institute for Polymer Research, 55128 Mainz, Germany

2Institute of Physical Chemistry, University of Mu¨nster, 48149 Mu¨nster, Germany
~Received 6 September 2002; published 26 March 2003!

We study the relation of the potential energy landscape~PEL! topography to relaxation dynamics of a small
model glass former of Lennard-Jones type. The mechanism under investigation is the hopping between super-
structures of PEL minima, called metabasins~MBs!. Guided by the idea that the mean durations^t& of visits to
MBs should reflect the local PEL structure, we first derive the effective depths of MBs from dynamics, by the
relation Eapp5d ln^t&/db, whereb51/kBT. Second, we establish a connection ofEapp to the barriers that
surround MBs. As the consequence of a rugged PEL, it turns out that escapes from MBs do not happen by
single hops between PEL minima, but correspond to complicated multiminima sequences. We introduce the
concept of return probabilities to the bottom of the MBs in order to judge when the attraction range of a MB
has been left. The energy barriers overcome can then be identified. These turn out to be in good agreement with
the effective depthsEapp, calculated from dynamics. We are thus able to relate MB lifetimes to their local
structure. Moreover, we can trace back the overall diffusive dynamics to the population of MBs and to their
local topology, i.e., to purely thermodynamic and structural quantities. Single energy barriers are identified
with the help of a new method, which accurately performs a descent along the ridge between two minima. We
analyze the population of transition regions between minima, called basin borders. No indication for the
mechanism of diffusion to change around the mode-coupling temperature can be found. We discuss the
question whether the one-dimensional reaction paths connecting two minima are relevant for the calculation of
reaction rates at the temperatures under study.
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I. INTRODUCTION

More than thirty years ago, Goldstein@1# proposed to
view a glass-forming system as a point moving in the hig
dimensional landscape of the potential energyV(x). In this
framework he suggested to focus onto the local minima
the potential energy landscape~PEL!, where the system is
supposed to be trapped at low enough temperatures. Via
casional transitions to neighboring minima the system fina
relaxes. Owing to the separation of time scales, one can
able to describe many features of glass formers by prope
of only the minima. Stillinger and Weber@2# formulated this
idea in the language of statistical thermodynamics using
concept of basins. A basin of a given minimum is defined
the set of configurations that reach this minimum via th
steepest descent pathẋ5F(x). @We setx andF(x) as short-
hands for the multidimensional vectors of all particle po
tions and all forces, respectively.# The resulting tiling of con-
figuration space into different basins allows one to write
free energy approximately as a function of static proper
of minima, i.e., their energies and vibrational frequenc
@3,4#. Knowledge of the thermodynamics is in general n
sufficient to predict dynamical properties like diffusion co
stants or relaxation times. However, experimental@5# as well
as simulated@6–8# data seem to indicate that there exists
strong connection between dynamics and thermodynam
via the Adam-Gibbs relation@9#.

Our goal is to reach a quantitative understanding of
slowing down of dynamics, as expressed by the bulk lo
time diffusion constantD(T). Mode-coupling theory~MCT!
@10# predicts a power-law behavior of the formD(T)}(T
2Tc)

g above the MCT critical temperatureTc . SinceTc is
found to be higher than the glass transition temperatureTg ,
1063-651X/2003/67~3!/031506~16!/$20.00 67 0315
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the MCT divergence of 1/D(T) at Tc is not observed in
practice. The common explanation for this shortcoming
MCT is that the theory neglects activated processes, or h
ping, which are supposed to come into play around and
low Tc . Indeed it was proven by Schrøderet al. @11# that in
the vicinity of Tc the time scale of fast local dynamic
around single minima becomes well separated from the t
scale of interbasin transitions. AboveTc the common picture
suggests that the dynamics is entropy driven, i.e., charac
ized by the search for escape directions@12–14#, since
saddles lie far below the instantaneous potential energy
the system and thus represent no serious barriers@15,16#.
Also different observables like the average order of sadd
@15,17# and the number of diffusionlike normal modes@12–
14,18# seem to indicate that well aboveTc the dynamics is
not governed by activated transitions between adjac
minima. However, in the multidimensional space of partic
coordinates, it is not obvious how to distinguish therma
activated from entropically limited dynamics. One possib
way to do this will be discussed below. For the time bein
we use the term hopping only in a formal sense, mean
that the trajectory of the system is mapped onto a seque
of jumps among minima.

Looking for a quantitative link of bulk diffusionD(T) to
PEL properties, we recently investigated hopping dynam
on the PEL in greater detail@19#. A priori, temporal and
spatial aspects of hopping events have to be considered
former in the shape of the waiting time distribution~WTD!
of jumps, the latter by the jump lengths and directions, a
correlations thereof. We found that strong backward corre
tions of jumps arise from the organization of minima in
superstructures, which, following@20#, we call metabasins
~MBs!. It had already been known from previous work@21#
©2003 The American Physical Society06-1
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that structural relaxation corresponds to jumps among M
rather than single basins. MBs were identified with the h
of a straightforward algorithm such that close-by minim
between which the system performs several back-and-f
jumps are identified as a single MB. Then, indeed, hopp
among MBs was found to be close to a random walk wit
distribution of MB waiting times. Motivated by this fact, w
expressedD(T) in the simple form

D~T!5
a2

6N^t~T!&
~1!

with the mean waiting timêt(T)& and theeffectivejump
length a(T). With this ansatz, we anticipated that waitin
times would carry the major part of the temperature dep
dence. Indeed,a(T) turned out to be constant forT,2Tc ,
which is why we dropped the argument ofa(T) in Eq. ~1!.
This constitutes an important step towards the understan
of diffusion is supercooled liquids: it suffices to look for th
physics behind MB waiting times, spatial details of hoppi
being expressed by a single constant.

A simple model for hopping dynamics has been discus
by Monthus and Bouchaud@22#. They consider the relax
ation from traps of depthsE with distribution r(E), and
escape rates g(E,T)5g0 exp(2bE). When r(E)
}exp(2E/Tx), the WTDs assume power-law tailsc(t)
}t2a(T) with exponentsa(T)511T/Tx . The consequence
is the divergence of the mean waiting time at temperat
Tx . In our recent paper, we observed that the WTDs o
binary Lennard-Jones system are in conformance with
kind of power-law decay@19#. As a consequence of suc
slowly decaying WTDs, the mean value^t(T)& was found to
be dominated by the few, very long waiting times. In oth
words, the temperature dependence ofD(T) follows alone
from the durations of trapping in the very stable MBs. The
results were obtained for small binary Lennard-Jones m
tures ofN565 particles. For a macroscopic system, whic
due to its dynamic heterogeneity@23#, contains many slow
and fast subsystems in parallel, this implies the dominanc
slow regions in the temperature dependence ofD(T).

The logical continuation along this line of thinking is t
relate MB lifetimes to the PEL topography. The most prom
nent characteristics of a MB is, of course, its energyeMB ,
which is defined as the lowest energy of all its constitu
minima. It is then natural to introduce the mean MB lifetim
^t(eMB ;T)& at constanteMB . Knowledge of^t(eMB ;T)&,
together with the population of MBs,p(eMB ;T), is sufficient
to calculatê t(T)& and thusD(T), as we will show now. We
write

^t~T!&5E deMB^t~eMB ;T!&w~eMB ;T!, ~2!

wherew(eMB ;T) is the distribution of MBs visited at tem
peratureT. We will see that this decomposition can b
achieved by a detailed analysis of the hopping dynam
Sincep(eMB ;T) denotes the probability that at a given tim
the system is in a MB with energyeMB , it is proportional to
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w(eMB ;T) and the timê t(eMB ;T)& the system remains in
MBs of this energy. With the appropriate normalization o
gets

p~eMB ;T!5
^t~eMB ;T!&

^t~T!&
w~eMB ;T!. ~3!

From Eqs.~1!–~3! it immediately follows the representatio

D~T!5
a2

6N K 1

^t~eMB ;T!&L
T

. ~4!

Here, ^¯&T denotes the canonical average@i.e., w.r.t.
p(eMB ;T)], while ^¯& is the average over MBs. Hence

$^t~eMB ;T!&, p~eMB ;T!%→^t~T!&→D~T!, ~5!

where the second implication has been established in
recent paper@19#. The populationp(eMB ;T) is related to the
single-basin populationp(e;T), a purely static quantity,
which has been extensively discussed in the literature@3,4,7#.
It has turned out for Lennard-Jones mixtures that the num
densityGeff(e) of minima is approximately Gaussian. Thu
the population of minima,p(e;T)}Geff(e)e2be, could be ex-
pressed by two parameters describing the global PEL st
ture @the mean and width ofGeff(e)]. In the present paper, we
focus on^t(eMB ;T)&, our goal being to deduce it from th
local PEL structure. If this succeeds, we have established
following connection,

local1global PEL structure→ long-time dynamics,

which, in our opinion, pushes the understanding of diffus
in supercooled liquids a step further.

We proceed as follows. We first compute MB lifetime
from ordinary simulation, and later compare them to the p
diction from PEL structure. First, we characterize the rela
ation from four single, randomly selected MBs. By an e
haustive sampling of these MBs, we will be able to get so
first insights into MB topology. Second, many MBs of fixe
energy are considered and their lifetimes^t(eMB ;T)& are
calculated. Third, we relate MB lifetimes to PEL structur
by quantifying the MB depths, or effective barriers, whic
determine the temperature dependence of^t(eMB ;T)&. The
physical scenario that will emerge from the results of t
paper implies that MBs can be regarded as traps, surroun
by high barriers. It turned out from exhaustive exploratio
of PEL connectivity@24# that due to the high dimensionalit
of configuration space the number of escape paths from
ery minimum is enormous. Thus, one may anticipate that
effective barrier to leave a specific MB results as a comp
superposition of individual escape paths. Therefore, en
mous numerical effort is required to quantify their multitud
for many different MBs.

Note that the whole analysis will be carried out in th
spirit of activated barrier crossing. The extent to which this
present in supercooled liquids is quite disputed in literatu
However, we will show that for temperatures in th
landscape-influenced regime below 2Tc , the apparent acti-
vation energy
6-2
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ENERGY BARRIERS AND ACTIVATED DYNAMICS IN A . . . PHYSICAL REVIEW E67, 031506 ~2003!
Eapp~eMB ;T!5
d

db
ln^t~eMB ;T!& ~6!

can indeed be identified with PEL barriers much larger th
kBT, which the system encounters when leaving a MB. Th
together with Eq.~4!, we will find that the activated escap
out of deep traps is the physical mechanism behind diffus

To our knowledge, such a connection between dynam
and PEL barriers has never been established for a fra
glass former. In contrast, for SiO2 , the apparent activation
energy of diffusion belowTc could be related to the simpl
breaking of SiuO bonds@25,26#.

The organization of the paper is as follows. In Sec. II,
provide the details of our simulation, and describe the in
val bisection method to identify MBs. Section III deals wi
the computation of apparent activation energies from re
ation dynamics. The corresponding energy barriers will
addressed in Sec. V, after introducing our technique for fi
ing transition states~Sec. IV!. In Sec. VI, we independently
demonstrate that barriers and associated reaction path
deed govern relaxation. Finally, we discuss further aspect
our results in Sec. VII and conclude in Sec. VIII.

II. SIMULATION DETAILS

A. General

In the present work, we investigate a binary mixture
Lennard-Jones particles~BMLJ!, as recently treated by two
groups@17,27#; see also Ref.@28#. It is characterized by the
interaction potentials

Vab~r !54eab@~sab /r !122~sab /r !6#

with the parameter setN5NA1NB552113565, sAB
50.8sAA , sBB50.88sAA , eAB51.5eAA , eBB50.5eAA , r c
51.8. Linear functions were added to the potentials to ens
continuous forces and energies at the cutoffr c . These modi-
fications of the original potential by Kob and Andersen@28#
are necessary for the simulation of small systems. We
Langevin molecular dynamics simulations~MD! with fixed
step size,l250.015252kBTdt/mz, equal particle massesm,
friction constantz, and periodic boundary conditions. Uni
of length, mass, energy, and time aresAA , m, eAA , and
AmsAA

2 /eAA, respectively. However, we will omit thes
units, for convenience. Moreover, we set the friction const
to z52/0.0152, which results in the elementary time ste
dt5T21. The mode-coupling temperature isTc50.45
60.01 in this model system~compare Ref.@28#!. For the
analysis of dynamics from the PEL perspective it is essen
to use small systems, as has been stressed in the liter
@21,29,30#. On the other hand, naturally, the system sho
not be too small in order to avoid major finite-size effec
For the BMLJ,N'60 turns out to be a very good compr
mise @17,21,27#, whereasN<40 already causes large finite
size effects@3#. Here we chooseN565, since the BMLJ60
system has a stronger tendency to be trapped in crysta
configurations. We stress here that the results obtained
the BMLJ65 system show no finite-size related artifacts. I
recent paper, this has been demonstrated in detail by c
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paring systems ofN565, 130, and 1000 particles@31#. For
example,D(T) of the BMLJ1000 is identical toD(T) of the
BMLJ65 aboveTc within less than twenty percent. In th
temperature range studied, we found that the behavior
BMLJ130 system largely resembles that of two independ
copies of a BMLJ65. Thus, the generalization of the pres
work to larger systems should not bear any pitfalls.

B. Interval bisection

By regularly quenching the MD trajectoryx(t) to the bot-
tom of the basins visited at timet, as proposed by Stillinge
and Weber, we obtain a discontinuous trajectoryj(t). A
problem from the standpoint of simulations is to resolve
elementaryhopping events. Since computer time prohibits
calculate the minimumj(t) for every time stept, we nor-
mally find ourselves in the situation of having equidista
quenched configurationsj(t i), t i5 iDt, with, say, Dt
5105 MD steps. If the same minimum is found for timest i
and t j , we need not care about transitions in the meantim
because no relaxation has occurred there. If, in contr
j(t i)Þj(t i 11), we must not expectj(t i 11) to be the direct
successor ofj(t i), since many other minima could have be
visited betweent i andt i 11 . Therefore, further minimizations
in this time interval are necessary. For reasons of efficien
we apply a straightforward interval bisection method, whi
locates transitions to an accuracy of 1 MD step: provid
j(tstart

(0) )Þj(tstart
(1) ), ~a! set t (0)←tstart

(0) , t (1)←tstart
(1) , ~b! recon-

struct the trajectoryx(t) at time t (2)5(t (0)1t (1))/2, ~c! cal-
culatej(t (2)), ~d! if j(t (2))5j(t (0)), set t (0)←t (2), else set
t (1)←t (2), ~e! repeat~b!–~d! until t (1)2t (0)51 MD step. Re-
peated application of the interval bisection to a simulat
run x(t) finally gives all relevant transitions. Note that th
determination ofall transitions including the numerous re
crossings of basin borders would require minimization
every MD step!The interval bisection method thus may ove
see back-and-forth motions between minima which, in a
event, are irrelevant for relaxation. Although computatio
ally demanding, the above method has proved most effic
for resolving the relevant details of hopping on the PEL a
is well suited for the construction of metabasins~see below!.

III. ACTIVATION ENERGIES FROM METABASIN
LIFETIMES

A. Metabasin lifetime construction

As said above, stable configurations in the supercoo
liquid are rarely due to single minima on the PEL, but mos
correspond to groups of strongly correlated minima. Wh
the system is trapped in such a MB for a long time, a sm
number of minima is visited over and over again. This is w
reflected by the time series of potential energies,e(t)
5V„j(t)… @19,21#. In this section, we will dwell on the com
putation of mean MB lifetimes,~i! for single, selected MBs
and ~ii ! averaged over MBs of a given energyeMB , thus
yielding ^t(eMB ;T)&. The individual MBs of~i! correspond
to long-lived MBs and thus represent typical MBs whic
govern the temperature dependence of^t(T)&.
6-3
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The strong correlations between groups of minima w
lead us to a precise definition of MBs in Sec. V, based on
probabilities of returning to a previous minimum. To obta
these return probabilities, we will need some more soph
cated simulation techniques, including repeated starts f
certain minima. This kind of analysis will be necessary
the determination of MB depths.

Here, for computing MB lifetimes@54#, we will take a
more pragmatic view. From a given MD run and the cor
sponding minima, the lifetimes of MBs can be obtain
through the following algorithm@21#.

~a! determine the intervals@ t i* ,t i
†# wheret i* is the time of

the first andt i
† the time of the last occurrence of minimu

j(t i* ),
~b! any two intervals (t i* ,t j* ,t i

†,t j
†) with an overlap of

less than fifty percent„i.e., (t i
†2t j* )/max$(ti

†2ti* ),(tj
†2tj* )%

,50%… are cut so that the new intervals fulfi
@ t i* ,t i

†#ù@ t j* ,t j
†#5B, either by setting t i

†5max$tuj(t)
5j(ti* ),t,tj* % or t j* 5min$tuj(t)5j(tj

†),t.ti
†% ~randomly, with

equal probability!, new intervals @min$tuj(t)5j(ti* ),t
.tj* %,max$tuj(t)5j(ti* ),t.tj* %# or @min$tuj(t)5j(tj

†),t
,ti

†%,max$tuj(t)5j(tj
†),t,ti

†%# are introduced, respectively,
~c! any two intervals overlapping by more than fifty pe

cent are combined to@ t i* ,t i
†#ø@ t j* ,t j

†#,
~d! intervals@ t j* ,t j

†# are deleted if there is some@ t i* ,t i
†#

with @ t j* ,t j
†#,@ t i* ,t i

†#,
~e! the lifetimes of MBs are defined by the intervals aft

step~d!, and
~f! the MB configurationjMB is defined as the lowes

minimum visited during the MB lifetime,eMB being its en-
ergy.

A few comments on the procedure are in order. Time
tervals in~a! are determined by the interval bisection meth
that yields the time of transitions from one minimum to a
other with an accuracy of one MD step. Step~b! is motivated
by the observation that recrossings of a basin border duri
transition are very probable. If we ignored this fact, i.
combined all overlapping intervals in step~c!, we would
merge nearly all intervals and end up with unphysically lo
MBs. The choice of fifty percent mutual overlap in steps~b!
and~c! is a bit arbitrary. However, we found that the resu
for MB lifetimes are not very susceptible to taking valu
other than fifty percent. Step~c! itself and step~d! are the
realization of the MB concept, since back-and-forth moti
is removed. It is important to note that, different from Re
@21#, we will treat all MBs on the same footing here, n
matter if they are short lived or long lived. We find that th
metabasin lifetimest range from a few MD steps to man
millions of them. This large span can only be covered w
the help of the interval bisection method.

So far, the MB lifetime construction rests upon sing
trajectories, which only partially reflect the configuratio
space topology. For the computation of lifetimes, thou
this poses no serious problem, see the discussion in Se
There, the MB concept will be given a more precise, sta
definition, based on the return probability to the grou
minimum.
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B. Activation energies for single MBs

As noted above, the temperature dependence ofD(T) is
dominated by the long-lived MBs. Generally, these are lo
lying MBs, i.e., deep traps in the PEL. Since different MB
differ in their stability, a statistical treatment will be neede
As a first step, however, we restrict ourselves to the inve
gation of single MBs.

The relaxation times computed in this section do not st
from regular, linear simulation runs, but are obtained by
tifically placing the system in a specific MB and waiting fo
its escape~escape runs!. The above algorithm for the MB
lifetime construction implicitly assumes that MBs final
have been left. In other words, the algorithm may not be u
to determine the time where to stop the simulation due
successful escape. Fortunately, we can avoid running
this paradoxical situation by judging from an independe
criterion whether an escape has been completed: if the
tance of the instantaneous minimum to the starting posi
is greater thandmax54, returning to the original basin ca
practically be excluded~see Sec. V for a justification o
dmax54). Then, by applying the MB construction algorith
to the escape run, we obtain the lifetime of the MB.

We analyzed four low-lying (eMB,2300), randomly se-
lected MBs in greater detail. By repeated starts from
bottom of the MBs, we computed the mean lifetimes^t i(T)&
as a function of temperature. From Fig. 1, we see that
relaxations from all MBs follow nicely an Arrhenius law
belowT51. We note that, due to starting in minima, a sho
intrabasin equilibration time (tmol540, from energy autocor-
relation! has been subtracted from the raw^t i(T)&.

The fact that an Arrhenius form of̂t i(T)& is observed
indicates that the barriers do not change any further u
lowering temperature. Put differently, MBs serve as tra
surrounded by barriers with heights aroundEapp( i )
5d ln^ti(T)&/db. We will see in Sec. V that this is indee
correct. SinceEapp( i )/kBTc.10 for the deep MBs, this im-
plies a strongly activated dynamics nearTc .

FIG. 1. Mean lifetimes of four low-lying, randomly selecte
metabasins, computed from repeated escape runs (eMB52301.64,
2300.47,2300.16, and2300.74, from top to bottom!. The number
of runs are 85, 59, 175, and 105, from top to bottom. Arrhenius
work well in the temperature rangeT<1'2.2 Tc , the correspond-
ing activation energies are given in the figure. Curves have b
shifted vertically by 0.5(42 i ) orders of magnitude for better in
spection.
6-4
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C. Activation energies vs MB energies

As a further step, we analyze the mean relaxation ti
from MBs with the same energy,^t(eMB ;T)&; see Eq.~2!.
Clearly, the loweMB’s are not populated at high temperatur
so that regular simulation does not yield^t(eMB ;T)& over a
wide temperature range. We therefore, artificially place
system in the desired MBs~in the lowest minimum of each
of them! and measure the escape times as a function of t
perature. Averaging over many different MBs, we obta
^t(eMB ;T)&. Results are shown in Fig. 2~a! as a function of
eMB . Below T51, all relaxation times display Arrhenius be
havior. Thus, the apparent activation energiesEapp(eMB ;T)
are temperature independent. In the following we will the
fore omit the second argument. Thus, we can write

^t~eMB ;T!&5t0~eMB!ebEapp~eMB!. ~7!

As expected, the properties of MBs, as expressed
Eapp(eMB) andt0(eMB), depend on their ground state ener
eMB . We can interpretEapp(eMB) as the mean effective dept
of MBs at eMB . Below eMB'2302, no MBs have been
found ~compare Fig. 3!.

A simple statement for the depths of traps would follow
the rims of all traps were at the same levele th . The conse-
quence would beEapp(eMB)5e th2eMB , for all eMB,e th .
This simple scenario is ruled out by the data, see Fig. 2~b!.
Actually, a more complicated energy dependence
Eapp(eMB) is expected from the very fact that the system

FIG. 2. ~a! Arrhenius plot of mean MB lifetimeŝt(eMB ;T)&,
for different eMB . A basin equilibration time oftmol540 has been
subtracted. Straight lines are fits of the form Eq.~7!. ~b! Apparent
activation energiesEapp(eMB). ~c! Prefactorst0(eMB). Curved lines
are interpolations of the data.
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despite its small size—is not a completely cooperative u
see the discussion in Sec. VII.

The fact that we still observe Arrhenius-like relaxation
Fig. 2 indicates that the variation of trap depths at const
eMB is not large, compareEapp( i ) from Fig. 1. Otherwise,
Eapp(eMB) would increase upon decreasing temperature,
to the more and more dominant, extremely deep traps
contrast, trap depths at constanteMB rather seem well defined
by eMB , which suggests the existence of some underly
topological principle.

As seen from Fig. 2~c!, the prefactort0(eMB) has no
strong dependence oneMB . From high energies, it decrease
at most an order of magnitude and seems to level off be
eMB52297. Hence, for the range of energies that domin
^t(T)& at low temperatures, it can be considered const
within error bars. In contrast toEapp(eMB), we will not be
able to deducet0(eMB) from PEL structure. Its weak varia
tion is therefore quite fortunate.

We will now analyze the second factor of the integrand
Eq. ~2!, w(eMB ;T). It is shown in Fig. 3~a!. Interestingly, the
variation of w(eMB ;T) is much weaker for lowT than the
variation ofp(eMB ;T); see Fig. 3~b!. From Eqs.~3! and~7!,
one concludes that the constancy of the distribut
w(eMB ;T) is equivalent to havingEapp(eMB)5e th2eMB ,
with some constante th . Since this simple behavior is no
present, one must still have a residual temperature de
dence ofw(eMB ;T).

FIG. 3. ~a! Distribution w(eMB ;T) of MB energies, for four
temperatures.~b! Mean energies, fromw(eMB ;T) and from
p(eMB ;T). ~c! Variances of the distributionsw and p. Polynomial
fits to the data are shown in~b! and ~c!. Straight lines are predic-
tions for p from an ideally Gaussian number density of MB ene
gies. The deviations from the Gaussian prediction at the loweT
are probably caused by insufficient statistics; see Ref.@32# for a
discussion of this issue.
6-5
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B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 031506 ~2003!
It turns out that, within statistical error,p(eMB ;T) is iden-
tical to the corresponding distribution of minimap(e;T).
One would expect this for higheMB , because no pronounce
MBs are observed there. Considering a deep MB with m
minima, this will equally effect no large difference betwe
p(eMB ;T) and p(e;T). The reason is that the group o
minima neareMB carry the largest part of the populatio
Since they are close toeMB , transferring their weight toeMB
when computingp(eMB ;T) has little effect.

As a consistency check, we use the data from Figs. 2
3 to reproduce^t(T)& indirectly via Eq. ~2! @denoted
^t(T)& ind]. The match with^t(T)& is not completely trivial
since the data for̂t(T)& andw(eMB ;T) were gathered from
a linear simulation run, whilêt(eMB ;T)& results from se-
lected MBs of certaineMB , where the system has been ar
ficially placed. As shown in Fig. 4, the agreement of^t(T)&
and^t(T)& ind is good forT<1 within the possible accuracy
Note that there is no free fit parameter between them.
deviation at T52 can be explained by the fact th
^t(eMB ;T)&, aboveT51, and especially for the higheMB ,
departs from Arrhenius behavior@see Fig. 2~a!#, so that the
parametrization of Eq.~7! is no longer valid.

So far, all barriers or trap depths have been derived in
rectly, from the temperature dependence of waiting times
link to the PEL structure is still lacking. For instance, t
activation energiesEapp( i ) of this section are expected t
reflect the local topography of the selected MBs. Inde
they can be identified from the barriers of escape paths
will be demonstrated in Sec. V.

First of all, the barriers between single, neighbori
minima are of great interest. These are known once we h
in hand the corresponding transition states.

IV. NONLOCAL RIDGE METHOD FOR FINDING
TRANSITION STATES

A. Description of the method

We now describe how to determine transition states~TSs!
from the simulation, by what we call the~nonlocal! ridge

FIG. 4. Arrhenius plot of the mean waiting time^t(T)& versus
the indirectly determined counterpart^t(T)& ind . For comparison,
we also show the inverse one-particle diffusion constant 1/D(T)
multiplied by a constant (a251.0), see Ref.@19#. Error bars are of
the order of the symbol size.
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method. The principle idea is that TSs are local minima
basin borders. They can be pictured as the lowest point
mountain ridges on the PEL. If the system crosses a b
border at timet, the steepest descent path starting fromx(t)
should end up in a TS, see Ref.@33#. In practice, however,
the descent will deviate from the ridge due to numerical
ror, finally ending up in the minimumj0[j(t2) or j1
[j(t1). As a way out, we let the system perform two d
scents in parallel, on either side of the basin border, as s
matically depicted in Fig. 5. More specifically, if a transitio
happened after timet, interval bisection yields the configu
rationsy0[x(t) and y1[x(t11 MD step). From these, by
further interval bisection on the straight line betweeny0 and
y1 , the distance to the border may be further reduced
necessary, resulting in two configurations, again calledy0
and y1 . Close as they are, they still belong to different b
sins. If we not let descendy0 and y1 in parallel, they first
move along the ridge towards the transition state until th
finally bend off to their respective minima. This separation
clearly not wanted, so from time to time we reduce th
distance by interval bisection. After a few iteration
(descents1 interval bisection! the vicinity of the transition
state is reached in most cases. We then use a short min
zation of the auxiliary potentialṼ51/2uF(x)u2 followed by a
few steps of Newton-Raphson type, which bring the sea
for the TS to a quick convergence. Besides a vanishing fo
the resulting configurationz has an hessian matrix with on
negative eigenvalue. After small displacements along
corresponding eigenvector, one reaches the adjacent min
via steepest descent. This yields the reaction path~RP! z(s),
where s is a curvilinear parameter. We setz(0)5z, z(s0)
5j0 , andz(s1)5j1 , wheres0 is negative.

It can happen, though, that no TS betweeny0 and y1 is
found, but that the interval bisection locates a third mi
mum. The basin border splits into two at this point, and
direct TS between the initial and final minimum is availab
Thus, we also have to split the descent along the basin bo
into two processes and then continue separately. If the
descents are successful without further bifurcations, we

FIG. 5. Sketch of the TS search with the ridge method.
6-6
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ENERGY BARRIERS AND ACTIVATED DYNAMICS IN A . . . PHYSICAL REVIEW E67, 031506 ~2003!
finished and have the optimum reaction path that take
detour via a third minimum. In such a situation, the RP
clearly not very useful. It has to be stressed that bifurcati
are no artifacts of the ridge method, but a topological feat
of some basin borders on the PEL. Fortunately, as a signa
of strong anharmonicity, they are quite rare and happen
occur only in the high-energetic regions of the PEL. For
escapes from long-lived MBs, they are of no importance

A similar algorithm is described in the literature@33#,
which, instead of minimization and interval bisection, us
local maximization betweeny0 and y1 to prevent the con-
figurations from moving apart. Although computationa
less expensive, this method is not appropriate for our p
pose. As an effect of the high dimensionality, the local sh
of the PEL aroundy0 and y1 gives no direct clue to the
membership to basins. When descending, one may thus l
the important property ofy0 belonging to the basin ofj0 and
y1 belonging to that ofj1 . This effect has indeed been re
ported in Ref.@33#.

In the literature, plenty of methods exist dealing with t
computation of transition states. For our purpose, howe
each of them has some kind of drawback, which we brie
discuss now. One kind of them starts from the knowledge
the initial and final minimum@34–37#. Common to the latter
methods is that, after a more or less educated guess fo
initial trial RP, one iteratively improves the RP according
some prescription, e.g., the minimization of an action fu
tional. Two sources of erroneous results have to be addre
in this connection. First, the two minima in question have
be true neighbors. This can only be verified by locating t
points close to the basin border, e.g., by interval bisection
the initial trial path. The numerical cost is not small; for o
ridge method, for instance, about one third of the calculat
time is consumed by fixingy0 and y1 ~depending on the
minimization interval of the original MD run!. Second, the
iterative path optimization may become stuck in a local
tremum, due to an unfortunate choice of the initial path.

The other kind of TS search methods start from an ini
minimum and climb up to a transition state guided by t
shape of the PEL. Just walking against the force, howe
would be a fatal strategy, as one can see by turning the
upside down: ending up in a TS is numerically impossib
since one quickly runs into one of the PEL singularities~two
or more identical particle positions!. Eigenvector-following
algorithms@38# overcome this defocusing of steepest asc
paths by walking into the direction of negative local PE
curvature. The activation-relaxation technique by Mouss
and co-workers, in contrast, steps against the force in
direction leading away from the minimum, while descendi
the PEL perpendicular to that direction@39#. A drawback of
the latter methods is that the choice for the next TS to mo
is not well under control. From the minimum, a starting d
rection is chosen, either by purely random displacement
by some hard-sphere-like particle moves@24#. Unfortunately,
the number of escape directions from a minimum is gen
ally very large@at leastO(Nd) as we found in the BMLJ65
see also Ref.@40##, whereas the majority of those is dynam
cally inaccessible at lowT. Hence, eigenvector-following
and activation-relaxation techniques yield many TSs wh
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only negligibly contribute to relaxation rates. Striving for th
simulation of low-temperature hopping dynamics based
these methods@27,41,42#, one may therefore suffer a consid
erable reduction of efficiency. In our point of view, this re
ders straightforward molecular simulation rather competit
for many purposes.

Furthermore, we mention two complementary means
studying energy barriers. The ‘‘lid’’ algorithm, proposed b
Wevers, Scho¨n, and Jansen@43#, is able to find upper bound
for the depths of single basins. By performing random wa
below different potential energy thresholds and by regu
minimizations, one is able to compute the elevation nec
sary for transitions to neighboring minima. From a more th
oretical perspective, Schulz has specified a relation betw
transition rates and the overlap of vibrations in neighbor
basins@44#.

Finally, we remark that in the field of supercooled liquid
another method for locatinggeneral stationary states
~saddles! has become quite fashionable. One defines the a

iliary potentialṼ51/2uF(x)u2 and looks for its local minima.
We now discuss this method and compare it to the rid
method.

B. Comparison to Ṽ saddles

The advantage of the ridge method is that we definit
find the relevant barrier for a transition, i.e., a first-ord
saddle on the basin border next to the point where the bo
was crossed. In contrast, the method using the auxiliary
tentialṼ51/2uF(x)u2 as applied in recent studies@15–17,30#
has two major drawbacks. First, theṼ minimization locates
saddles~we call themṼ saddles!, even if they are not acces
sible kinetically. This is because the expressionF†HF is not
positive @H5H(x) denotes the hessian ofV(x)], i.e., Ṽ
minimization canclimb up to a saddle. Second, one obtai
higher-order saddles and, most frequently, nonstation
points~shoulders!. These configurations are of no use to u
because we specifically analyze paths over the lowest b
ers on basin borders, i.e., transition states.

To shed more light on the interrelation of TSs a
Ṽ-saddles, we minimizedṼ by steepest descent, startin
from configurationsx(t) only if j(t)Þj(t11 MD step)~like
y0 in Fig. 5!. In other words, we calculatedṼ saddles exactly
at transition times. If this yielded the correct TSs, our mo
time-consuming ridge method would be clearly useless. T
differenceDe5e Ṽ2eTS specifies the overestimation of th
true barrier by theṼ saddle. It may also happen that th
index of theṼ saddle~the number of negative eigenvalues
the hessian! is different from one. The distributions ofDe
and the index are shown in Fig. 6 forT50.5. Obviously, the
Ṽ saddles considerably overestimate barriers and the co
TSs are only found very rarely. Moreover, most of theṼ
saddles have an index different from one, i.e., are no TS
all. In turn, the energy of the TS is never undersold by aṼ

saddle. In conclusion,Ṽ saddles turn out to have the unde
ired quality of being decorrelated from the relevant TSs, i
6-7
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B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 031506 ~2003!
from the barriers that control relaxation~see Sec. VI!.

C. Population of basin borders

After Angelani and co-workers@15,16#, the mean index of
Ṽ saddles vanishes atTc . Therefore, as they have argue
dynamics aboveTc is dominated by saddles, in that there a
always some unstable directions available that allow the
tem to relax, without traversing an additional energy barr
PassingTc , the mechanism suffers a drastic change, a
abruptly, one is faced with an index of ca. zero, i.e., sadd
have to be reached via thermal activation. Since the prec
ing subsection may cast some doubts on the significanceṼ
saddles, we now want to discuss an alternative analysi
the way the population of minima versus unstable confi
rations evolves upon decreasing temperature. More spe
cally, we determine the population of basin borders,

pBB~T!5
1

Z~T!
E dBE dxe2bV~x!d~x2B!, ~8!

wherex integration is over the noncrystalline part of config
ration space, also in the partition functionZ(T), andB runs
over all basin borders of the PEL. This expression is impr
tical in numerical simulation; one may rather ask if, for som
instantaneous configurationx, there is a basin border nearb
In this case, small random displacements~length dPR, di-
rection vPRNd, uvu51) possibly lead into another basin
i.e.,j(x)Þj(x1vd). This kind of PEL analysis has recent
been carried out by Fabricius and Stariolo@45#. One calcu-
lates

pBB~T;d!5^P„j~x!Þj~x1vd!…&T,v , ~9!

which is the probability that random disturbancesvd will
cause crossings of basin borders at temperatureT. The brack-
ets denote the canonical plus the average over the ran
directionsv. One obtains the behavior

pBB~T;d!→const3pBB~T!d, d→0 ~10!

FIG. 6. Comparison of transition states, obtained via the rid

method, with minima of the auxiliary potentialṼ. Starting points
for saddle computations lay close to basin borders. Main plot:

togram ofṼ saddle minus TS energies. Inset: histogram of indi

of Ṽ saddles.
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~the constant is set to unity for convenience!. The validity of
Eq. ~10! is demonstrated in the left inset of Fig. 7, whe
pBB(T;d)/d has been calculated as a function ofd. We find
that pBB(T;d)/d is constant within statistical error belowd
51.2. As an orientation, the typical distance between nei
boring minima is larger than 2.0, whereas intra-MB neig
bors on average are less than 1.0 apart.

The main part of Fig. 7 shows results forpBB(T) in an
Arrhenius plot, with d50.7. Over the whole temperatur
range considered,pBB(T) is Arrhenius-like. The apparent ac
tivation energy is ca. 1.8, which is small in comparison w
the typical values observed for MB lifetimes. However, t
temperature dependence becomes stronger if we impos
constraint of a minimum distance between neighbor
minima ~data not shown!. In this way, we eliminate the fas
intra-MB transitions, which have small barriers.

In any event,pBB(T) features no noticeable change
behavior when approaching and crossingTc . In a different
graphical representation~see right inset! one might wrongly
conclude thatpBB(T) disappears at some finite temperatu
Stated differently, the data in the main part of Fig. 7 sugg
that the increasing timescale separation upon cooling h
pens rather smoothly, with no distinctly new physics eme
ing nearTc . This is in qualitative agreement with the wor
of Schrøderet al. @11#, who use the incoherent scatterin
functions from hopping dynamicsj(t) to deal with the sepa-
ration of intrabasin and interbasin dynamics. There, the
tial short-time decay of scattering functions~quantified by
the so-called nonergodicity parameter! is nothing else than a
measure for the population of basin borders.

V. ENERGY BARRIERS FROM PEL TOPOLOGY

A. Return probabilities and metabasin definition

With the tools of interval bisection and TS search, we a
now in the position to analyze the escapes from MBs in f
detail. When a MB is left, we first resolve all minima visite

e

-

s

FIG. 7. Population of basin borderspBB(T) obtained from dis-
turbances of lengthd50.7, which corresponds to a displacement
ca. 0.09 per particle. Left inset, dependence ond of pBB(T;d)/d,
for T50.5 andT50.6. Right inset,pBB(T) plotted linearly against
T.
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ENERGY BARRIERS AND ACTIVATED DYNAMICS IN A . . . PHYSICAL REVIEW E67, 031506 ~2003!
during the escape. Second, all corresponding TSs and, i
sired, reaction paths are calculated. An example is show
Fig. 8. The successive RPs were spliced together to a l
multiminima RPz(s). One might take the energy profile
V„z(s)…, depicted in the figure, for one of the common ca
toons of a PEL. However, it rests upon real data. Berry a
co-workers have produced similar charts for the relaxation
small atomic clusters towards their global minima@42,46#.
For s,5 one can see the typical back-and-forth hopp
among the ground minima of the MB. Obviously, the cor
sponding barriers are not large compared tokBT50.5. The
escape starts ats55. The first minimum reached is ver
unstable as expected from the small backward barrier.
deed, if we repeatedly start in this minimum and perform
number of short simulation runs~here: 99! with different
random numbers, the system will return to the bottom of
MB with probability pback598% and leave the range of a
traction only rarely. Thus, the escape is far from being co
plete at this stage. Going to the next minimum, the ret
probability decreases, but does not drop to zero. We say
the system is free ifpback is smaller than 50%. As the out
come of this investigation, we obtain the energy barrier s
mounted before the first minimum withpback,50% was
reached, see below. The exits from other long-lived M
mostly look the same as in the example, while the escap
one jump is not common. In other words, MBs usually ha
the form of a funnel with some ledges on the walls@20,47#.
Minima with pback.50% are said to belong to the MB. Th
criterion is reminiscent of the definition of dynamic bottl
necks introduced by Chandler and co-workers@48#.

An interesting property of a MB is its diameterd. It is
defined as the maximum distance between its minima.
the MBs found in the simulation atT50.5, the distribution
of diameters is depicted in Fig. 9. Thed peak from single-
minimum MBs has been omitted. No MB withd.dmax54
has been found. As a consequence, if a minimum has a
tance larger thandmax to some MB minimum, we can safel

FIG. 8. Potential energy along the reaction pathz(s), which
was calculated from the dynamics during 105 MD steps, at the end
of a typical MB of life span 83106 MD steps. The mapping ofs to
time is nonlinear. The small barriers fors,5 belong to fast
intra-MB transitions.pback denotes the probability of returning t
the bottom of the MB. As a comparison, the potential energy at
temperature (T50.5) fluctuates around2249.366.1.
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assumepback!50%. This criterion has already been used
Sec. III.

Based on these insights, we can now provide a more c
plete description of MBs~Fig. 10!. First, the ground state o
a MB has to be identified~kernel minimum!, since the defi-
nition of pback rests upon it. At low enough temperatures, t
kernel minimum will certainly be visited during the MB life
time, due to the very low barriers among the minima on
bottom of the MB. Second, for minima beyond the distan
dmax from the kernel, we setpback to zero. Third, the prob-
ability pback for returning to the kernel before reaching
distance greater thandmax can be assigned to every remai
ing minimum and, in principle, be computed by simulatio
To this end, one repeatedly starts in the minimum and che
if a recurrence to the kernel occurs. Fourth, the minima w
pback.50% are defined as the MB.

Please bear in mind thatpback will in general depend on
temperature, since it is defined by dynamics. Correlati
among minima are expected to increase towards lower t
peratures, implying that MBs are no static concept but rat

at

FIG. 9. Distribution of MB diametersd defined as the maximum
distance between all minima that were visited during a MB lifetim
The d peak from single-minimum MBs has been omitted.

FIG. 10. Sketch of the configuration space around a MB, cros
representing minima. Large crosses are the highly popula
minima on the bottom of the MB. The shaded area compri
minima of high return probability to the kernel minimum (pback

.50%). By definition, these constitute the MB. The bent line is t
system trajectoryx(t) entering and finally leaving the MB.
6-9
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B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 031506 ~2003!
grow with decreasingT. In Fig. 8, e.g., the minimum ats
'6.5 has the ‘‘critical’’ value ofpback'47% atT50.5. Al-
though we do not know the details of PEL connectiv
around this minimum, the small backward barrier sugge
that the minimum would exceedpback550% for still lower
temperatures, thus joining the MB. However, we may a
conceive some situations where a criticalpback'50% is quite
insusceptible to temperature changes. This is the cas
backward and forward barriers are of about the same s
We will come back to that issue later.

We further note that the explicit computation ofpback can
be extremely expensive. This is mainly the case whenpback is
small, and complete escapes beyonddmax have to be awaited
However, the exact value ofpback is of no great interest. In
fact, it suffices to know whetherpback,50% or pback
.50%. This decision can often be reached to a high co
dence within few trials.

The MB lifetime algorithm in Sec. III is based on th
detection of back-and-forth jumps between minima. O
mostly observes the dominant minima on the bottom of
MBs, whereas the more elevated members are only we
populated, see Fig. 10. If MB lifetimes are to be read from
simulation run, it suffices to notice when the set of domin
MB minima has been left, since the visits to the eleva
minima at the end of the MB lifetime happen quite rapid
Thus, the algorithm of Sec. III reduces the MB to the m
populated minima, which is sufficient for the purpose of lif
time calculation from a given simulation run. In contrast, f
the predictionof MB relaxation behavior as pursued in th
section, the minima close to the rim of MBs are of spec
interest. Their elevations from the bottom of the MB give t
depth of the MB.

B. Barriers for metabasin relaxations

In the spirit of the above remarks, we will now carry o
a systematic investigation of the energy barriers overco
when escaping MBs. The goal is to recover the appa
activation energies computed in Sec. III from PEL topolo

The mean lifetimêt i& of MB i can be expressed in term
of escape ratesg i ,a of different relaxation channelsa,

^t i&
215(

a
g i ,a . ~11!

In general, eachg i ,a reflects a multiminima escape path

j0→
z01

j1→
j12

j2¯jM21 →
zM21,M

jM ~12!

as the one shown in Fig. 8. Here,j0 is the kernel minimum
(jaÞj0 ,a.0) andzab is the TS forja→jb . Suppose that
the numberM of jumps in the sequence Eq.~12! is large
enough to completely quite the MB’s range of attraction, i
pback(M )'0. For the escape shown in Fig. 8, e.g.,M>7
would be fine.

We further take for granted that the rates for single bar
crossings follow quantitatively—via transition state theory
from the height of barriers,Eab5V(zab)2V(ja) ~the energy
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difference between the minimumja and the TS betweena
andb!. Hence, the ratesgab for single transitionsja→jb are
characterized by

gab}e2bEab. ~13!

A justification of this assumption, even for temperatur
aboveTc , will be given in Sec. VI.

Generally, the probability of upward jumps is small at lo
T. Hence, climbing out of a MB in a back-and-forth fashio
~e.g., ja5ja12 and ja115ja13) is not probable.~This is
reminiscent of the fact that the activated crossing of sin
potential barriers happens on a short time scale, i.e., i
rather straight way.! In contrast,excursionsfrom the main
path may happen. As shown in Fig. 8, the minimum as
56.5 is revisited ats59 after taking a look at another mini
mum (s'8). The latter does not appear again later o
Clearly, running into such ‘‘dead ends’’ should not contribu
to the escape rate via the successful main path. We there
eliminate such excursions from the sequence of minima,
~12!. From these remarks we take the liberty of assum
that no minimum appears more than once along the esc
path,

jaÞjb , aÞb. ~14!

We are now interested in the contribution of the path, E
~12!, to the total escape rate Eq.~11!. Particularly, we have to
consider the question of how many single transitions are
evant for the escape process. The probability to jump fr
minimum ja to ja11 is ga,a11 /ga , wherega denotes the
inverse lifetime of minimumja . The rate of escape via
longer pathway now is given by the rate of the first jum
times the probability that the minimaja (a51,...,M ) are
visited in correct order thereafter,

g i ,a5g01

g12

g1

g23

g2
¯

gM21,M

gM21
. ~15!

In this expression, we have neglected the residence time
the elevated MB minima (j1 , j2 , etc.! during the escape
which, at sufficiently low temperatures, are short as co
pared to the total MB lifetime. With the help of Eq.~13! one
calculates

2
d

db
ln g i ,a5E011 (

a51

M21

pret~a!~Ea,a112Ea,a21!,

~16!

wherepret(a)5ga,a21 /ga is the probability to jump back to
minimum a21 from minimuma. In the derivation of Eq.
~16!, we have neglected a term proportional toEa,a11 minus
the average barrier when jumping froma to a neighboring
minimum other thana21. This term strictly vanishes whe
performing the final summation in Eq.~11!. Moreover, we
have made use of Eq.~14!.

One possibility for calculating activation energies fro
Eq. ~16! would be to consider the complete paths, Eq.~12!,
where pback(M )'0, and determine all terms in the sum
Eq. ~16!. However, an accurate computation of all the d
6-10
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ENERGY BARRIERS AND ACTIVATED DYNAMICS IN A . . . PHYSICAL REVIEW E67, 031506 ~2003!
siredpret(a)’s would even be more costly than the determ
nation of the point wherepback changes from above to below
50%. We therefore use the following approximation of E
~16!, which is in conformance with our previous definition
MBs. Let m(T) be the first minimum along the path, E
~12!, where pback,50%. Then, for alla,m(T), we set
pret(a) to unity, while for a>m(T) ~i.e., outside the MB!,
we let pret(a)50. Thus,

2
d

db
ln g i ,a'Ei ,a[E011 (

a51

m21

~Ea,a112Ea,a21!

5em212e01Em21,m, ~17!

wherem5m(T). In this way, the termsa,m(T) in Eq. ~16!
are given higher weights, whereas those ofa>m(T) are ne-
glected. We will dwell on the quality of this approximatio
later on; see also Ref.@49#.

Note that, due to the temperature dependence ofpback,
energy barriersEi ,a generally increase upon cooling: At hig
temperatures, in contrast, correlations among minima
small, such that MBs~even the low-lying! consist of only
one minimum. This effect is included in Eq.~17! by the
temperature dependence ofm(T).

C. Single metabasins

We now relate the lifetimes of single, selected MBs~cf.
Sec. III B! to PEL barriers. By repeated starts from the
MBs, the local PEL topography is sampled thoroughly, yie
ing sets of typical escape pathways. Whenever a MB is
we locate the transitions by interval bisection and obtain
corresponding TSs with the help of the ridge method. Th
pback is calculated for the minima visited, until for the firs
time, pback,50%. Finally, the barrierEi ,a(k) is computed
according to Eq.~17!, wherea(k) denotes the escape pa
chosen at thekth escape. The histograms of barriers a
shown in Fig. 11, for the four MBs of Fig. 1, atT50.5
51.1Tc . Due to the slow dynamics at this temperature,
computation ofpback was rather expensive. Nevertheless,
statistics should be sufficient for a reasonable estimate o
apparent activation energy. To this end, we expressEapp( i ) of
MB i in terms of the contributionsEi ,a ,

d

db
ln^t i&'^t i&(

a
Ei ,ag i ,a5(

a
pi ,a[Eapp

est~ i !, ~18!

where Eqs.~11! and ~17! have been used. Thus, the barrie
Ei ,a are weighted by the probabilitiespi ,a5g i ,a /(dg i ,d that
the escape happens via pathwaya. Note that theEi ,a(k) cor-
respond to the pathways that werechosenby the system, i.e.
they are already weighted correctly bypi ,a(k) , compare Eq.
~18!. Therefore,Eapp

est( i ) is just the average of theEi ,a(k) . The
values ofEapp( i ) andEapp

est( i ), given in Fig. 11, are in good
agreement. Also shown in Fig. 11 are the distributions of fi
barriers E01 belonging to the stepj0→j1 . Evidently, the
neglect of the multiminima nature of escapes leads to a c
siderable underestimation of apparent activation energie
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We now continue the discussion of the temperature
pendence of barriersEi ,a(T). At the example of MB 1 from
Fig. 11, we have carried out the above program for two ot
temperaturesT50.6 and 0.8. The obtained distributions o
barriers,P(Ei ,a), are shown in Fig. 12. We find that th
estimates for the apparent activation energy@Eapp

est(1;T
50.6)56.960.5, andEapp

est(1;T50.8)56.860.5] remain in
good agreement withEapp(1)56.760.3 from Sec. III. The
distributions of barriers, however, grow narrower with d
creasing temperature. High barriers contributing to the rig
wing of the distribution become inaccessible at lowT, i.e.,
the relative weightspi ,a of the corresponding escapes b
come small. This suppression of high barriers at lowT is a
trivial effect.

More interesting is the vanishing of small barriers up
cooling, i.e., of the barriersE,5 in the figure. Naively, one
would expect these to dominate the escape rate at lowT.
However, due to the stronger backward correlations~in-
creasedpback), jumps over these barriers eventually do n
suffice anymore to escape. As described above, the res
tive escape paths,j0→¯→jm(T) , grow longer, and the bar-
riers change to a different, mostly larger value.

D. Average over metabasins

During our analysis of the escape times in Sec. III t
apparent activation energiesEapp(eMB) emerged as usefu
quantities. Although the above results already indicate t
barrier hopping is the relevant motional mechanism, a cle

FIG. 11. Bold curves: Histograms of barriersEi ,a(k) overcome
when escaping single MBs (i 51, 2, 3, 4 atT50.5). Light curves:
Respective histograms of barriersE01 from first jumps. Apparent
activation energiesEapp( i ), mean barriersEapp

est( i ), and mean barri-

ers from first jumpsĒ01 are given in the figure.
6-11
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B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 031506 ~2003!
cut verification requires the comparison with the average b
rier the system has to cross when leaving a MB with ene
eMB .

For this purpose we now carry out a similar program
before, with many MBs visited during an ordinary MD ru
We concentrate on MBs with lifetimes of more than 105 MD
steps~179 MBs! at T50.5. When such a MB is left, we
locate the transitions by interval bisection and obtain
corresponding TSs by the ridge method. Then, we calcu
pback and identify the barrierEk[Ei (k),a(k) according to Eq.
~17!. The histogram of barriers is shown as the bold line
Fig. 13. For comparison, we also show the barriers minus
contribution of the TSsEm21,m . Ignoring multiminima cor-
relations, we further show the histogram of first barriersE01
of escapes. Evidently, the neglect of TSs or of backw
correlations leads to much smaller barriers.

From the above barriers we will now calculate estima
of the apparent activation energiesEapp(eMB). When the av-
erage over lifetimes of different MBs is considered, each M
i acquires a weightw i corresponding to its probability o
occurrence,

^t&5(
i

w i^t i&.

At fixed eMB , the analog to Eq.~18! can then be derived

d

db
ln^t~eMB ;T!&'(

i

^t i&w i

^t~eMB ;T!& (a pi ,aEi ,a , ~19!

where summation goes over MBs of energyeMB . As in Eq.
~18!, the barriers in Eq.~19! are weighted according to the
probability of occurrence, but, additionally, with the respe
tive MB lifetimes.

In Eq. ~19!, we have neglected terms stemming from t
variation ofw i ’s with temperature. This is justified, since th
w i ’s belong to the sameeMB . Their relative weights will only
vary if these MBs differ considerably in barrier heights. A
already stated above, however, MBs of the same ene

FIG. 12. Normalized histograms of barriersE1,k overcome when
escaping MB 1, forT50.5, 0.6, and 0.8. The numbers of contri
uting barriers are 42, 72, and 59, respectively. Estimated appa
activation energies,Eapp

est(1;T), are given in the figure.
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seem to be fairly uniform regarding this property. For t
finite sample of MBs visited during an MD run, Eq.~19! then
takes the form

Eapp
est~eMB!5

(tkEk

(tk
, ~20!

where summation goes over MBs of energyeMB . Again, the
correct weighting is implicit here. This expression can
shown to converge to the right-hand side of Eq.~19! in the
limit of infinitely long sampling. In Fig. 14 we show the
values ofEapp

est(eMB) determined in this way. They perfectl
agree with the apparent activation energies, derived from
analysis of relaxation times at different temperatures. T
we have a clear-cut proof that the apparent activation e
giesEapp(eMB) are indeed related to barriers on the PEL a
thus reflect activated behavior significantly aboveTc . This
again demonstrates that we not only deal with the right or
of barrier sizes, but we alsoquantitativelylink PEL topogra-
phy to dynamics.

For comparison, we included the apparent activation
ergy which results, if only the first transitions of escap
j0→j1 , are considered@E015V(z01)2e0#. One ends up
with much too small apparent activation energies. Aga
multiminima correlations turn out to be crucial for the cha
acterization of MB depths.

In principle, the results of Fig. 14 may slightly change
all MBs rather than those with lifetimes larger than 105 MD
steps were considered. However, our analysis has clearly
vealed~see, e.g., Fig. 1! that the depths of MBs of simila
eMB’s only vary mildly. Thus, inclusion of MBs with smalle
values oft would not significantly change the values of th
apparent activation energiesEapp

est(eMB).
Finally, we show that these results, in conjunction w

p(eMB ;T), largely explain the behavior of the diffusion con
stantD(T). This is a conceptually important step, since w
link D(T) to purely structural and thermodynamical quan
ties, see Eq.~5!. The key is the mean lifetimêt(eMB ;T)& of
MBs at energyeMB , which is parametrized byt0(eMB) and

nt

FIG. 13. Histogram of barriers from a regular MD run atT
50.5 ~bold!. Neglecting the contributions of the last transition sta
~i.e., usingem2eMB), we find smaller barriers~light line!. The bar-
riers E01 from only the first jumps are given as the dotted line.
6-12
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ENERGY BARRIERS AND ACTIVATED DYNAMICS IN A . . . PHYSICAL REVIEW E67, 031506 ~2003!
Eapp(eMB) @Eq. ~7!#. The former,t0(eMB), however, has no
been deduced from PEL properties. Its variation with M
energy is not strong@Fig. 2~c!#, so we can hope that setting
to a constant will be a good approximation. Thus, Eq.~4!
becomes

D~T!'
a2

6Nt0
E deMBp~eMB ;T!e2bEapp

est
~eMB![Dest~T!.

~21!

The estimated diffusion constantDest(T) is shown in Fig. 15.
The agreement ofD(T) with our estimate is satisfactory be
low T51. The deviation atT52 is due to the depart o
^t(eMB ;T)& from Arrhenius behavior, see Fig. 2~a!.

VI. BARRIER CROSSING

When making use of Eq.~13!, we presumed that the ba
riers V(zab)2V(ja) in fact are the determinants of the tem
perature dependence of rates. The excellent agreemen
tween Eapp(eMB), determined from dynamics, an
Eapp

est(eMB), from the analysis of PEL barriers, strongly ind
cates that this presumption is indeed true. We will show h
in a detailed way that atT50.551.1Tc , escapes from stabl
MBs are perfectly activated. More precisely, two conditio
are fulfilled, ~i! the potential barriers are much larger th
kBT, ~ii ! rates follow from the 1D energy profile of the R
plus corrections from perpendicular curvatures.

We will check these conditions explicitly here by a
analysis of escape dynamics out of MBs. We made the
servation that during every escape from a stable MB, at le
one single barrier larger than 6kBT must be surmounted
Moreover, this larger jump is mostly undertaken from one
the lowest minima of the MB, compare Fig. 8. From t
repeated escape runs of Sec. III B, we selected the most
quent ten transitions of that kind. From the respective T
z l , we computed the RPs, denotedz l(s), l 51,...,10. We then
investigated the motion within the MBs over a long period
the simulation, where no escape had happened (107 MD

FIG. 14. Eapp(eMB) ~Fig. 2! vs estimatedEapp
est(eMB) from PEL

barriers. Considering only the first jumps of escapes, we fin
much smaller estimate@Eapp

1st(eMB)#. Data stem from a regular MD
run at T50.5, where MBs of lifetime greater than 105 MD steps
were analyzed~179 MBs, see Fig. 13!.
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steps each MB!. The goal was to observe how the syste
tries to climb the different RPs. To this end, we projected
instantaneous configurationx(t) onto each of the RPs, ac
cording to

sl~ t ![$s8:ix~ t !2z l~s8!i5min
s

ix~ t !2z l~s!i%,

which means the point on the RP next tox(t). Due to the
long residences in the MBs, motion therein is largely equ
brated. Hence, if the potential energy profilesV„z l(sl)… along
the reaction paths are of importance for the transition ra
we expect that the populationspl(sl) of the RPs follow from
Boltzmann’s law,

pl~sl !}exp$2bVl~sl !%Yl
'~sl ![exp$2bFl~sl !%.

The vibrations perpendicular to pathl are accounted for by
the harmonic partition function

Yl
'~sl !5E dy expH 2

b

2 (
n

lnyn
2J d„y• t̂~sl !…,

where the originy50 corresponds to the pointz l(sl), the
ln’s are the eigenvalues of the hessian matrixH(sl), yn the
components ofy along the eigenvectors, andt̂ (sl) is the
tangent to the reaction path.

The upper inset of Fig. 16 shows an example ofpl(sl) vs
Fl(sl)/kBT. The population of the reaction path follow
nicely the prediction from its energy profile. For RPs wi
complicated shapes this correspondence can be distur
The worst agreement of the considered RPs is shown in
second inset. Still, a clear correlation of RP population w
energy is present. We compiled the results for all ten RP
Fig. 16 as a parametric plot of2 ln pl vs Fl /kBT. Curves of
slope one result from a perfect equivalence ofpl to Fl /kBT.
Here, we find an average slope of 0.92. Since transition r
are proportional to the population of TSs, the implication
these results is obvious: MB jump rates follow from ener
barriers. We finally note that the vibrational terms lnYl

'(sl)
are minor as compared tobV(sl).

In view of these results, it is a little surprising that the T
location with the help of the auxiliary potentialṼ was that
unsuccessful~cf. Sec. IV!. Since the RP population suits we

a

FIG. 15. Comparison of the inverse diffusion constant 1/D(T)
with the prediction 1/Dest(T) from Eq. ~21!, t05200.
6-13
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B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 031506 ~2003!
the harmonic description of the RP, one expects that mo
near the TS is quite harmonic, too. MinimizingṼ in an har-
monic potential directly yields the stationary state. Con
quently, one should easily find the TS when starting from
configuration ats'0. After Sec. IV, this is not the case, so
least minor anharmonicities must be present.

VII. DISCUSSION

The metabasin concept is at the heart of the present s
The important insight is that, upon cooling, not only the tim
scale of interbasin transitions becomes well separated fro
intrabasinvibrations, but also that a similar separation occ
betweenMB hopping and intra-MB transitions. Recently
Biroli and Kurchan have analyzed the general problem
defining metastable states in glassy systems@50#. They con-
clude that one has no absolute notion of a state without m
ing reference to a time scale and hence to dynamics. Also
present definition of MBs relies on the dynamics of the s
tem. It is, however, independent of time scale and exc
sively depends on thepback values, which directly reflect the
topological properties of the PEL.

Our MB definition ~see Fig. 10! is devised to eliminate
the information on trivial back-and-forth jumps within MBs
This strongly correlated type of motion is reminiscent of t
particles’ rattling in the cages formed by their neighbo
Similarly, escaping from MBs seems to be equivalent to
breaking of cages and thus to structural relaxation. Gui
by this idea, we have examined MB relaxation in great
tail.

First, for repeated relaxation from the same MB, we c
culated the mean relaxation time^t i& and found Arrhenius
behavior in all cases. The simplest view is that the appa
activation energiesEapp( i ) from the Arrhenius-likê t i& ~Fig.

FIG. 16. Parametric plot showing the correspondence
2Dpl(sl)52 ln pl(sl)1const to the free energy profileDFl(sl)
5Fl(sl)/kBT1const,l 51,...,10,T50.5. All curves were shifted to
start in the origin. Insets: comparison of the free energy profile
two reaction paths with the population along the path.
03150
n

-
a

dy.

s

f

k-
he
-
-

.
e
d
-

-

nt

1! should correspond to the depths of these MBs, i.e., to
typical heights of barriers that surrounded the MBs. Inde
this has been quantitatively confirmed for the four random
selected, low-lying MBs~see Fig. 11!. A direct conclusion
from the constancy ofEapp( i ) is that the system does not fin
smaller and ever smaller barriers upon decreasingT.

Although not of statistical relevance for the whole PE
the results for the four single MBs give us a detailed pictu
of the local PEL topography. An important outcome is t
variation of barrier heights with temperature, see Fig. 12.
have already discussed that low barriers increase upon c
ing, due to enhanced multiminima correlations~growing
MBs!, while unnecessarily high barriers are suppressed. B
effects seem to cancel, so that the mean barrierEapp

est remains
constant, leading to Arrhenius behavior belowT51. This
cancelation may be fortunate; at least we can offer no ex
nation for it, here. As depicted in Fig. 12, the distribution
barriers becomes more and more narrow when going fr
T50.8 toT50.5, but the mean value, i.e.,Eapp

est(1), remains
constant. The constant apparent activation energy of M
down toT50.45 implies that the mean value of the distrib
tion of barriers has not increased. We thus speculate tha
growth of barriers due to increasing multiminima corre
tions has essentially come to an end atT<0.5. Although the
temperature dependence of the barrier distribution has o
been analyzed for a single MB, the constancy of appar
activation energies of the other three MBs and the temp
ture independence ofEapp(eMB) support this idea. Stated dif
ferently, the development of superstructures of minim
seems to cease at some temperature aboveTg .

Expressed bypback, this means that no minimum with
pback,50% will surpasspback550% upon further cooling,
thus being unable to join the MB in question. Hence,
escape sequence found at one temperatureT<0.5 has the
same length at another one, i.e., from some temperature
the minimum jm(T) remains atpback,50% for T→0; we
then say it terminates the sequence. It is an interesting q
tion under what circumstances such termination happen
trivial example would be a ‘‘transit’’ minimum with one
backward and one forward exit, where taking the forwa
one leads to a minimum withpback'0. If the backward bar-
rier was higher than the forward one,pback would go to zero
for T→0. On the other hand, the minima inside MBs gen
ally feature growingpback’s upon cooling, because the ene
getic gain of returning becomes more and more attract
Ideally, thus, for T→0, we would havepback→1 within
MBs, andpback→0 outside. This provides a plausible, phys
cal basis for computing barrier heights according to Eq.~17!,
at least in the limitT→0. Clearly, a more detailed investiga
tion of the temperature dependence ofpback is necessary to
back these conclusions@49#.

Second, we analyzed the average relaxation tim
^t(eMB ;T)& from MBs at fixed energyeMB . Again, they
displayed Arrhenius behavior, with apparent activation e
ergy Eapp(eMB) ~see Fig. 2!, which compared well with the
prediction from PEL barriers~Fig. 14!. In this connection, a
recent paper by Grigeraet al. @30# is of interest. The authors
use theṼ potential to compute saddles in a binary so

f

f
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ENERGY BARRIERS AND ACTIVATED DYNAMICS IN A . . . PHYSICAL REVIEW E67, 031506 ~2003!
sphere mixture (N570). From the TSs among these sadd
~index one, no shoulder!, they perform steepest descents
obtain the connected minima. They define barriers as
energy differenceDU from the TSs to the lower one of th
connected minimae5min(e0,e1). Plotting the average
DU(e), they find a curve similar to ourEapp(eMB), Fig. 14,
i.e., a strong increase of barriers towards lower energies
contrast, when carrying out the same analysis for
BMLJ65, we found a nearly constantDU(e), a curve close
to the first barriers of escapesE01 shown in Fig. 14. We
would have expected this result, since the multistep natur
escapes in the BMLJ65 has clearly been demonstrated
the other hand, the contrasting result of Grigeraet al. indi-
cates that the soft-sphere PEL is not organized in mu
minima superstructures. A clarification of this point would
very useful.

Note that Eapp(eMB) is of special importance since
bridges the separation between dynamics@diffusion constant
D(T)] and thermodynamics~population ofeMB). Clearly, an
understanding ofEapp(eMB) from basic principles is highly
desirable. It is plausible that the simple formEapp(eMB)
5e th2eMB can only be expected for a system acting a
completely correlated entity. In contrast, two independen
relaxing subsystems should generally show a weaker de
dence ofEapp(eMB) on eMB . This can be seen by a ver
simple argument. Consider two independent, identical s
tems, with MB energieseMB

(1) , eMB
(2) and activation energy

Ẽapp(eMB
(1,2)). What can be said aboutEapp(eMB) of the union

of these systems, at MB energyeMB5eMB
(1) 1eMB

(2) ? In the
limit of low temperatures, the apparent activation energy
given by min@Eapp(eMB

(1) ),Ẽapp(eMB
(2) )#. A proper average ove

different realizationseMB
(1) , eMB

(2) 5eMB2eMB
(1) yieldsEapp(eMB)

of the combined system. Instead of carrying out this avera
we use the fact thatẼapp(eMB

(1,2)) is a monotonous function an
estimate

0<min@Eapp~eMB
~1! !,Ẽapp~eMB

~2! !#<Ẽapp~eMB/2!.

Thus, 0<Eapp(eMB)<Ẽapp(eMB/2), which means that the
combined system shows a weaker dependence oneMB than a
single copy. For a reasonable PEL topology, one would
pect udEapp(eMB)/deMBu<1, because barriers should n
mount up more than one descends in the PEL. Since
eMB-dependence ofEapp becomes weaker for larger system
it in turn should increase towards smallerN. As a specula-
tion, this might open a way of estimating the size of coo
erative regions.

The results shown in Fig. 15, obtained via Eqs.~4! and
~7!, demonstrate the use of the present work. From PEL
riers @Eapp

est(eMB)# and thermodynamics@p(eMB ;T)# we are
able to produce a reasonable estimate of dynamics. An o
all proportionality factor 1/t0 remains as an adjustable p
rameter, since it could not be predicted from PEL structu
As discussed in Sec. III, one may usep(e;T) instead of
p(eMB ;T), since they are nearly identical. This is very co
venient, because upon constructingp(e;T), no information
about dynamics is needed. The breakdown of the Arrhen
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form of ^t(eMB ;T)& above 2Tc limits our description to the
temperaturesT<2Tc . In any event, we would not hav
dared to make quantitative statements on the basis of
hopping picture above the landscape-influenced tempera
regime.

From the fact that we could quantitatively relate MB life
times to PEL barriers below 2Tc and the results from Sec
VI, we see that there exist activated barrier crossing eve
significantly aboveTc . As shown before@19#, these escape
processes from stable MBs determine the temperature de
dence of the diffusion constant also aboveTc . Thus, the
general statement that hopping events are not relevant t
~see, e.g., Ref.@51#! is not correct for the BMLJ system. Thi
implies that the ideal MCT can be applied to systems
which activated processesdeterminethe time scale of relax-
ation. Thus it seems that the theoretical description of
cage effect in terms of structural quantities, as done in MC
works independent of whether the cage effect is purely
tropic ~like in hard-sphere systems! or is to a large degree
based on activated barrier crossing.

Moreover, with the help of the unbiased quantitypBB(T),
we were able to measure the population of basin borders
indication for an abrupt change of relaxation mechani
could be observed inpBB(T); in contrast, the separation o
intrabasin and interbasin motion seems to happen ra
smoothly ~see Fig. 7!. Thus, there is no qualitative chang
aroundTc .

We finally discuss the relation of our work to the insta
taneous normal mode approach~INM !, which considers the
average number of ‘‘diffusive modes,’’f diff(T), to be at the
physical basis of diffusion@12,13,18#. From the directions
corresponding to negative eigenvalues of the hessianH„x(t)…
~unstable directions!, one filters out the ‘‘diffusive’’ direc-
tions. Considering the energy profile on the straight lin
along the unstable directions, La Naveet al. observed ex-
tremely small barriers, indicating completely ‘‘entropic’’ dy
namics at the considered temperatures@18#. This conclusion,
though reached for a model of supercooled water, is in c
trast to our findings of the relevance of energetic barriers
possible key to this apparent contradiction is thatf diff(T) is
directly related to the fraction of time spent in ‘‘mobile
regions of configuration space. In contrast, we have conc
trated on the durations of the stable, immobile structures.
the consequence of longer and longer residences in d
MBs, the mobile fraction becomes smaller and smaller. Th
one observes a relation betweenD(T) and f diff(T), although
it is the long trapping times which are the reason for t
slowing down of dynamics.

We further note that the MB concept is not implement
in the INM approach. Supercooled water, e.g., exhibits v
pronounced MB correlations in the time series of minim
even for a large system of 216 particles@52#. Generally, frag-
ile glass formers are expected to have a rugged PEL,
exhibit extensive superstructures of minima@20#. In view of
this insight, the success of INM analyses for the latter type
systems is quite surprising.

VIII. CONCLUSION

Our goal in this paper was to shed some light on
temperature dependence of the diffusion constant. In our
6-15
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vious work @19#, metabasins turned out as a useful conc
that reduces correlations of subsequent PEL-hopping eve
Taking seriously these correlations, the present investiga
went a step further into this direction, by relating the te
perature dependence of relaxation to the depths of these
timinima superstructures. We have shown in this paper th
quantitative link between PEL structure and dynamics is p
sible aboveTc . However, our approach is still phenomen
logical at this stage: we are far from predictingEapp(eMB)
from more general PEL properties or even the interact
potentials. To achieve this is a major challenge, implying
deep understanding of the energy landscape topology.

Further insights might be obtained by unveiling thereal-
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spaceaspects of MB relaxation. Here, the correspondence
MBs to the cage effect should serve as the guiding princip
An interesting question along this line would be if some
the real-space phenomena found in supercooled liquids~e.g.,
the stringlike motion discovered by Donatiet al. @53#! can be
traced back to energy-landscape features.
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