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Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid
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We study the relation of the potential energy landsd@el) topography to relaxation dynamics of a small
model glass former of Lennard-Jones type. The mechanism under investigation is the hopping between super-
structures of PEL minima, called metabasintBs). Guided by the idea that the mean durati¢fsof visits to
MBs should reflect the local PEL structure, we first derive the effective depths of MBs from dynamics, by the
relation E,p=d In(7)/dB, where 3=1/kgT. Second, we establish a connectionkyf,, to the barriers that
surround MBs. As the consequence of a rugged PEL, it turns out that escapes from MBs do not happen by
single hops between PEL minima, but correspond to complicated multiminima sequences. We introduce the
concept of return probabilities to the bottom of the MBs in order to judge when the attraction range of a MB
has been left. The energy barriers overcome can then be identified. These turn out to be in good agreement with
the effective depth€,,,, calculated from dynamics. We are thus able to relate MB lifetimes to their local
structure. Moreover, we can trace back the overall diffusive dynamics to the population of MBs and to their
local topology, i.e., to purely thermodynamic and structural quantities. Single energy barriers are identified
with the help of a new method, which accurately performs a descent along the ridge between two minima. We
analyze the population of transition regions between minima, called basin borders. No indication for the
mechanism of diffusion to change around the mode-coupling temperature can be found. We discuss the
guestion whether the one-dimensional reaction paths connecting two minima are relevant for the calculation of
reaction rates at the temperatures under study.
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[. INTRODUCTION the MCT divergence of D(T) at T, is not observed in
practice. The common explanation for this shortcoming of
More than thirty years ago, Goldste|d] proposed to MCT is that the theory neglects activated processes, or hop-
view a glass-forming system as a point moving in the high-ping, which are supposed to come into play around and be-
dimensional landscape of the potential enex{x). In this  low T.. Indeed it was proven by Schrgdefral.[11] that in
framework he suggested to focus onto the local minima othe vicinity of T, the time scale of fast local dynamics
the potential energy landscagpBEL), where the system is around single minima becomes well separated from the time
supposed to be trapped at low enough temperatures. Via oseale of interbasin transitions. Aboilg the common picture
casional transitions to neighboring minima the system finallysuggests that the dynamics is entropy driven, i.e., character-
relaxes. Owing to the separation of time scales, one can biged by the search for escape directiofi®—14, since
able to describe many features of glass formers by propertiesaddles lie far below the instantaneous potential energy of
of only the minima. Stillinger and Web¢2] formulated this  the system and thus represent no serious barfiEsslg.
idea in the language of statistical thermodynamics using thélso different observables like the average order of saddles
concept of basins. A basin of a given minimum is defined a$15,17 and the number of diffusionlike normal modgl2—
the set of configurations that reach this minimum via theirl4,18 seem to indicate that well abovie. the dynamics is
steepest descent path F(x). [We setx andF(x) as short- not governed by activated transitions between adjacent
hands for the multidimensional vectors of all particle posi-minima. However, in the multidimensional space of particle
tions and all forces, respectivelyihe resulting tiling of con-  coordinates, it is not obvious how to distinguish thermally
figuration space into different basins allows one to write theactivated from entropically limited dynamics. One possible
free energy approximately as a function of static propertiesvay to do this will be discussed below. For the time being,
of minima, i.e., their energies and vibrational frequenciesye use the term hopping only in a formal sense, meaning
[3,4]. Knowledge of the thermodynamics is in general notthat the trajectory of the system is mapped onto a sequence
sufficient to predict dynamical properties like diffusion con- of jumps among minima.
stants or relaxation times. However, experimefalas well Looking for a quantitative link of bulk diffusio® (T) to
as simulated6—8] data seem to indicate that there exists aPEL properties, we recently investigated hopping dynamics
strong connection between dynamics and thermodynamiasn the PEL in greater detajll9]. A priori, temporal and
via the Adam-Gibbs relatiof9]. spatial aspects of hopping events have to be considered, the
Our goal is to reach a quantitative understanding of theformer in the shape of the waiting time distributiOWwTD)
slowing down of dynamics, as expressed by the bulk longof jumps, the latter by the jump lengths and directions, and
time diffusion constanD(T). Mode-coupling theoryMCT)  correlations thereof. We found that strong backward correla-
[10] predicts a power-law behavior of the forBy(T)e(T  tions of jumps arise from the organization of minima into
—T.)” above the MCT critical temperatui,. SinceT. is  superstructures, which, followinfR0], we call metabasins
found to be higher than the glass transition temperalyre  (MBs). It had already been known from previous w@|
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that structural relaxation corresponds to jumps among MBg(¢,5;T) and the time{7(eyg;T)) the system remains in
rather than single basins. MBs were identified with the helpviBs of this energy. With the appropriate normalization one
of a straightforward algorithm such that close-by minimagets

between which the system performs several back-and-forth

jumps are identified as a single MB. Then, indeed, hopping (r(emp;T))

among MBs was found to be close to a random walk with a Plems i T)= (7(T)) elewsT). @
distribution of MB waiting times. Motivated by this fact, we
expressed (T) in the simple form From Egs.(1)—(3) it immediately follows the representation
2 1
G D<T>=a—<—> . @
D)= 8Ny oy 6N\ (7(emp:T))/

Here, (---); denotes the canonical averagee., w.r.t.

with the mean waiting tim&+(T)) and theeffectivejump b(eys :T)], while (---) is the average over MBs. Hence

length a(T). With this ansatz, we anticipated that waiting
times would carry the major part of the temperature depen- {7(ews:T)), plews;T)}—{(7(T))—D(T), (5)
dence. Indeeda(T) turned out to be constant far<2T,,
which is why we dropped the argument &fT) in Eq. (1).  where the second implication has been established in our
This constitutes an important step towards the understandingcent papef19]. The populatiop(eyg ; T) is related to the
of diffusion is supercooled liquids: it suffices to look for the single-basin populatiomp(e;T), a purely static quantity,
physics behind MB waiting times, spatial details of hoppingwhich has been extensively discussed in the literdtBig 7).
being expressed by a single constant. It has turned out for Lennard-Jones mixtures that the number
A simple model for hopping dynamics has been discussedensity G¢(e) of minima is approximately Gaussian. Thus,
by Monthus and BouchaufR2]. They consider the relax- the population of minimap(e; T)xGq(€)e P, could be ex-
ation from traps of depth& with distribution p(E), and  pressed by two parameters describing the global PEL struc-
escape rates y(E,T)=y,exp(-=BE). When p(E) ture[the mean and width dB.x(¢€)]. In the present paper, we
«cexp(—E/Ty), the WTDs assume power-law tailg(7) focus on(7(eyg;T)), our goal being to deduce it from the
o7~ (M with exponentsy(T)=1+T/T,. The consequence local PEL structure. If this succeeds, we have established the
is the divergence of the mean waiting time at temperaturéollowing connection,
Ty. In our recent paper, we observed that the WTDs of a
binary Lennard-Jones system are in conformance with this
kind of power-law decayf19]. As a consequence of such
slowly decaying WTDs, the mean val(e(T)) was found to

be dominated by the few, very long waiting times. In other We proceed as follows. We first compute MB lifetimes

words, the temperature dependenceDdfT) follows alone . . )
b P eDdfT) from ordinary simulation, and later compare them to the pre-

from the durations of trapping in the very stable MBs. These.” .. . :
results were obtained for small binary Lennard-Jones mixdiction from PEL structure. First, we characterize the relax-

tures of N=65 particles. For a macroscopic system, which,ﬁgﬁgtif\::n;aﬁuiins'ng]!ethéggdﬁgslyviglsv?ﬁege '\:EIZ tgy ;nsgr)r({e
due to its dynamic heterogeneif23], contains many slow piing ! 9

and fast subsystems in parallel, this implies the dominance 0f+rst insights into MB topology. Second, many MBs of fixed

slow regions in the temperature dependenc® 6F). energy are considered and their lifetimes(eyg;T)) are
The logical continuation along this line of thinking is to calculated. Third, we relate MB lifetimes to PEL structure,

L . by quantifying the MB depths, or effective barriers, which

relate MB lifetimes to the PEL topography. The most promi- . )
nent characteristics of a MB is, of course, its eneegy , determine the temperature dependencekyg;T)). The .
which is defined as the lowest energy of all its constituentohys'cf"lI scenario that will emerge from the resulis of this
minima. It is then natural to introduce the mean MB lifetime P2PE" |mpI|e_s that MBs can be regarded as traps, surrom_mded

. . i arriers. It turned out from exhaustive explorations
(7(ewg;T)) at constanteyz. Knowledge of (7(eyg;T)), by high b > | d f ha . plorati
togethér with the population of MB( eys :T), is suff’icient of PEL connectivity{ 24] that due to the high dimensionality

o calculatel 7(T)) and thusD(T), as we will show now. We of conf|gurat|9n space the number of escape .pgths from ev-
Write ery minimum is enormous. Thus, one may anticipate that the

effective barrier to leave a specific MB results as a complex
superposition of individual escape paths. Therefore, enor-

<T(T)>:f deva(7(ens ;) e(ens;T), (2)  mous numerical effort is required to quantify their multitude
for many different MBs.

Note that the whole analysis will be carried out in the
where ¢(eyg;T) is the distribution of MBs visited at tem- spirit of activated barrier crossing. The extent to which this is
perature T. We will see that this decomposition can be present in supercooled liquids is quite disputed in literature.
achieved by a detailed analysis of the hopping dynamicsHowever, we will show that for temperatures in the
Sincep(eyg; T) denotes the probability that at a given time landscape-influenced regime below 2 the apparent acti-
the system is in a MB with energsy,s , it is proportional to  vation energy

local+global PEL structure>long-time dynamics,

which, in our opinion, pushes the understanding of diffusion
in supercooled liquids a step further.
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d paring systems oN=65, 130, and 1000 particld81]. For
Eapd eme; T) = @'”(T( evs:T)) (6)  exampleD(T) of the BMLJ1000 is identical t®(T) of the
BMLJ65 aboveT, within less than twenty percent. In the
can indeed be identified with PEL barriers much larger thariemperature range studied, we found that the behavior of a
kgT, which the system encounters when leaving a MB. ThusBMLJ130 system largely resembles that of two independent
together with Eq(4), we will find that the activated escape copies of a BMLJ65. Thus, the generalization of the present
out of deep traps is the physical mechanism behind diffusiorwork to larger systems should not bear any pitfalls.
To our knowledge, such a connection between dynamics
and PEL barriers has never been established for a fragile
glass former. In contrast, for SjQ the apparent activation B. Interval bisection

energy of diffusion belowl; could be related to the simple By regularly quenching the MD trajectoryt) to the bot-

breaking of Si-O bonds| 25,26, tom of the basins visited at timeg as proposed by Stillinger

The organization of the paper is as follows. In Sec. II, we : X X .
provide the details of our simulation, and describe the interf’jmd Weber, we obtain a discontinuous trajecta(y). A

val bisection method to identify MBs. Section Il deals with problem from the standpoint of simulations is to resolve the

: oo . elementaryhopping events. Since computer time prohibits to
the computation of apparent activation energies from relax- L ;

) ) ) . . “calculate the minimung(t) for every time stept, we nor-
ation dynamics. The corresponding energy barriers will be v find | in the situati £ havi idi
addressed in Sec. V, after introducing our technique for fingnay Tinc OUrseives in the situation of having equidistant
ing transition state¢Sec. IV). In Sec. VI, we independently iulegsc&e[()j St(;Ol';flg”EJ '[ﬁgosnfngg)r,nir;[iir;llﬁnt’is ]Y(\;'Hr:’ q fsoaryiin?ts
demonstrate that barriers and associated reaction paths in- PS. &

deed govern relaxation. Finally, we discuss further aspects gg;]u ’Séven2efe?ar;(‘;ttigﬁﬁ::?é:&?&ﬂ“?ﬁ;én tl?eirr:]i%rr:ttlggt’
our results in Sec. VIl and conclude in Sec. VIII. " '

&(t) # &(t 1), we must not expecé(t;, 1) to be the direct
successor of(t;), since many other minima could have been
visited betweern; andt;, ;. Therefore, further minimizations
A. General in this time interval are necessary. For reasons of efficiency,
we apply a straightforward interval bisection method, which
locates transitions to an accuracy of 1 MD step: provided
R # £t @ sett@—tQ) t@—tl), (b) recon-
struct the trajectory(t) at timet®=(t©@+t1)/2, (c) cal-
culate £(t®), (d) if £(t@)=¢(t©), sett@—t3) else set
Vop(1) =4€ .50 (005/1) 2= (0,5/1)°] tM—t@) (e) repeat(b)—(d) until tH)—t(®=1 MD step. Re-
peated application of the interval bisection to a simulation
with the parameter seN=Nj+Ng=52+13=65, oag run x(t) finally gives all relevant transitions. Note that the
=0.80pp, 0gg=0.880pp, €ap=1.5epn, €gg=0.5epn, I determination ofall transitions including the numerous re-
=1.8. Linear functions were added to the potentials to ensurerossings of basin borders would require minimization for
continuous forces and energies at the cutgff These modi-  every MD stepThe interval bisection method thus may over-
fications of the original potential by Kob and Anderd@8]  see back-and-forth motions between minima which, in any
are necessary for the simulation of small systems. We usevent, are irrelevant for relaxation. Although computation-
Langevin molecular dynamics simulatiofl®lD) with fixed  ally demanding, the above method has proved most efficient
step sizen?=0.015=2kgT st/m¢, equal particle masses,  for resolving the relevant details of hopping on the PEL and
friction constant{, and periodic boundary conditions. Units is well suited for the construction of metabasisse below.
of length, mass, energy, and time a#g,, m, exn, and

Il. SIMULATION DETAILS

In the present work, we investigate a binary mixture of
Lennard-Jones particld8MLJ), as recently treated by two
groups[17,27); see also Refl28]. It is characterized by the
interaction potentials

\/mO'AZA/GAA, respectively. However, we will omit these Ill. ACTIVATION ENERGIES FROM METABASIN
units, for convenience. Moreover, we set the friction constant LIFETIMES

to /=2/0.01%, which results in the elementary time step
8t=T"1. The mode-coupling temperature i$,=0.45
+0.01 in this model systenicompare Ref[28]). For the As said above, stable configurations in the supercooled
analysis of dynamics from the PEL perspective it is essentidiquid are rarely due to single minima on the PEL, but mostly
to use small systems, as has been stressed in the literaturerrespond to groups of strongly correlated minima. While
[21,29,3Q. On the other hand, naturally, the system shouldthe system is trapped in such a MB for a long time, a small
not be too small in order to avoid major finite-size effects.number of minima is visited over and over again. This is well
For the BMLJ,N~60 turns out to be a very good compro- reflected by the time series of potential energiest)
mise[17,21,27, whereasN<40 already causes large finite- =V(&(t)) [19,21]. In this section, we will dwell on the com-
size effectd3]. Here we choos&l =65, since the BMLJ60 putation of mean MB lifetimes(j) for single, selected MBs,
system has a stronger tendency to be trapped in crystallinend (i) averaged over MBs of a given energys, thus
configurations. We stress here that the results obtained fofielding (7(eyg;T)). The individual MBs of(i) correspond
the BMLJ65 system show no finite-size related artifacts. In &0 long-lived MBs and thus represent typical MBs which
recent paper, this has been demonstrated in detail by congovern the temperature dependence «{fT)).

A. Metabasin lifetime construction
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T
log <7,

(M)>

lead us to a precise definition of MBs in Sec. V, based on the
probabilities of returning to a previous minimum. To obtain
these return probabilities, we will need some more sophisti- I
cated simulation techniques, including repeated starts from 6
certain minima. This kind of analysis will be necessary for I
the determination of MB depths.

Here, for computing MB lifetimeg54], we will take a
more pragmatic view. From a given MD run and the corre- ]
sponding minima, the lifetimes of MBs can be obtained 2F .
through the following algorithni21]. I T ]

(a) determine the intervalg? ,t|] wheret? is the time of 00 0I.5 10 15 2‘,0 Y
the first andt; the time of the last occurrence of minimum
&(tF),

(b) any two intervals ¢ <t* <t/ <tl) with an overlap of

FIG. 1. Mean lifetimes of four low-lying, randomly selected
metabasins, computed from repeated escape reps=—301.64,
—300.47,—300.16, and-300.74, from top to bottom The number
less than fifty percenti.e., (tiT—tf)/ma%(t?—ti"),(tf—tj*)} of runs are 85, 59, 175, and 105, from top to bottom. Arrhenius fits
<50%) are cut so that the new intervals fulfill work well in the temperature range<1~2.2T,, the correspond-

[tF ,tiT]ﬂ[tJ* ,tJ-T]=®, either by setting t/=maxt|&(t) ing activation energies are given in the figure. Curves have been
=&)<t} or tf =min{t|§(t)=§(t}r),t>t;'} (randomly, with shifted vertically by 0.5(4-i) orders of magnitude for better in-
equal probability, new intervals [min{t|&t)=&t").t spection.
>t maxtlén=£&6) >4 or  [min{tlét)=&t)t
<t} maxt|&t)=&(t]).t<t/}] are introduced, respectively,

B. Activation energies for single MBs

As noted above, the temperature dependende (@) is

(c) any two intervals overlapping by more than fifty per-
cent are combined tft¥ t/JU[tF .t]],
(d) intervals[t* ,t/] are deleted if there is sonje ,t/]

with [tF tf]C[tF t]],

dominated by the long-lived MBs. Generally, these are low-
lying MBs, i.e., deep traps in the PEL. Since different MBs
differ in their stability, a statistical treatment will be needed.
As a first step, however, we restrict ourselves to the investi-

(e) the lifetimes of MBs are defined by the intervals after gation of single MBs.

step(d), and
(f) the MB configurationéyg is defined as the lowest
minimum visited during the MB lifetimegyg being its en-

ergy.

The relaxation times computed in this section do not stem
from regular, linear simulation runs, but are obtained by ar-
tifically placing the system in a specific MB and waiting for
its escapelescape runs The above algorithm for the MB

A few comments on the procedure are in order. Time indifetime construction implicitly assumes that MBs finally
tervals in(a) are determined by the interval bisection methodhave been left. In other words, the algorithm may not be used

that yields the time of transitions from one minimum to an-

other with an accuracy of one MD step. Stépis motivated

to determine the time where to stop the simulation due to
successful escape. Fortunately, we can avoid running into

by the observation that recrossings of a basin border during #is paradoxical situation by judging from an independent

transition are very probable. If we ignored this fact, i.e.,

combined all overlapping intervals in stdp), we would

criterion whether an escape has been completed: if the dis-
tance of the instantaneous minimum to the starting position

merge nearly all intervals and end up with unphysically longis greater thard,,,=4, returning to the original basin can

MBs. The choice of fifty percent mutual overlap in stéps

practically be excludedsee Sec. V for a justification of

and(c) is a bit arbitrary. However, we found that the resultsdmax=4). Then, by applying the MB construction algorithm
for MB lifetimes are not very susceptible to taking valuesto the escape run, we obtain the lifetime of the MB.

other than fifty percent. Stefr) itself and step(d) are the

We analyzed four low-lying €< —300), randomly se-

realization of the MB concept, since back-and-forth motionlected MBs in greater detail. By repeated starts from the

is removed. It is important to note that, different from Ref.

[21], we will treat all MBs on the same footing here, no

bottom of the MBs, we computed the mean lifetindegT))
as a function of temperature. From Fig. 1, we see that the

matter if they are short lived or long lived. We find that the relaxations from all MBs follow nicely an Arrhenius law

metabasin lifetimes range from a few MD steps to many

below T=1. We note that, due to starting in minima, a short

millions of them. This large span can only be covered withintrabasin equilibration timer,,= 40, from energy autocor-

the help of the interval bisection method.

So far, the MB lifetime construction rests upon single

relation has been subtracted from the réw(T)).
The fact that an Arrhenius form gfr;(T)) is observed

trajectories, which only partially reflect the configuration indicates that the barriers do not change any further upon
space topology. For the computation of lifetimes, thoughlowering temperature. Put differently, MBs serve as traps

this poses no serious problem, see the discussion in Sec.

Surrounded by barriers  with heights arounB, i)

There, the MB concept will be given a more precise, static=d In{7(T))/dB. We will see in Sec. V that this is indeed
definition, based on the return probability to the groundcorrect. SinceE,,{i)/kgT>10 for the deep MBs, this im-

minimum.

plies a strongly activated dynamics nday.
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290} <g(T)> 1 N i
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| ] 202} ]
2.0 (b) ) (c)
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FIG. 3. (a) Distribution ¢(eyg;T) of MB energies, for four
FIG. 2. (a) Arrhenius plot of mean MB lifetimegr(eyg;T)), temperatures.(b) Mean energies, frome(eyg;T) and from
for different ey . A basin equilibration time of,,,=40 has been p(eyg;T). (c) Variances of the distributiong andp. Polynomial
subtracted. Straight lines are fits of the form Ef. (b) Apparent fits to the data are shown ifb) and (c). Straight lines are predic-
activation energieg ,{ eyg) . (C) Prefactorsry(eyg). Curved lines  tions for p from an ideally Gaussian number density of MB ener-
are interpolations of the data. gies. The deviations from the Gaussian prediction at the loWwest
are probably caused by insufficient statistics; see R3] for a

C. Activation energies vs MB energies discussion of this issue.

As a further step, we analyze the mean relaxation tim
from MBs with the same energys(evg;T)); see Eq.(2).

Clearly, the loweyg's are not populated at high temperatures The fact that we still observe Arrhenius-like relaxation in

SO that regular simulation does not y'qldeM.B.;.T» over a Fig. 2 indicates that the variation of trap depths at constant
wide temperature range. We therefore, artificially place the "

. . ; - €vg IS not large, compar&,,{i) from Fig. 1. Otherwise,
system in the desired MBén the IO\.NeSt minimum 9f each Eapd €ve) Would increase upon decreasing temperature, due
of them and measure the escape times as a function of M5 the more and more dominant, extremely deep traps. In
perature. Averaging over many different MBs, we Obtalncontrast, trap depths at constagy rather seem well defined

<T(EME;T)>'TRfiUItﬁ arle shtc_)wnt_ln F'géfa ?S aAfuL\ctu_)n cl;f by ewg. which suggests the existence of some underlying
€yp - below | =1, all relaXation umes aisplay Arrnenius oe- tOpO|Ogica| principle.

havior. Thus, the apparent activation enerdigs{ evg;T) As seen from Fig. @), the prefactorro(eys) has no

are temperature independent. In the following we will there- . N
' . ron ndence afyg . From high energi i r
fore omit the second argument. Thus, we can write strong dependence Giyg 0 gh energies, it decreases

at most an order of magnitude and seems to level off below
(1(epmp;T))=7o( eyp)€PFardme), (7) ems= —297. Hence, for the range of energies that dominate
(7(T)) at low temperatures, it can be considered constant
within error bars. In contrast t&,,{ evg), we will not be
As expected, the properties of MBs, as expressed bwble to deducery(eyg) from PEL structure. Its weak varia-
Eapd €me) and7o(evg), depend on their ground state energytion is therefore quite fortunate.
emg - We can interpreE, { eyg) as the mean effective depth ~ We will now analyze the second factor of the integrand in
of MBs at €yz. Below eyz~—302, no MBs have been EQq.(2), ¢(eyg;T). Itis shown in Fig. 8a). Interestingly, the
found (compare Fig. B variation of ¢(eyg;T) is much weaker for lowTl than the
A simple statement for the depths of traps would follow if variation ofp(eyg;T); see Fig. 8). From Eqgs(3) and(7),
the rims of all traps were at the same le¥gl. The conse- one concludes that the constancy of the distribution
quence would beE,,{ emp) = €nm— €y, for all eyg<ep. ¢(em;T) is equivalent to havingE,,{ evg) = €n— €mg »
This simple scenario is ruled out by the data, see Hig).2 with some constant,. Since this simple behavior is not
Actually, a more complicated energy dependence ofresent, one must still have a residual temperature depen-
Eapd €ms) is expected from the very fact that the system—dence ofe(eyg ;T).

%espite its small size—is not a completely cooperative unit,
see the discussion in Sec. VII.

031506-5



B. DOLIWA AND A. HEUER PHYSICAL REVIEW E 67, 031506 (2003

N L R R B S B S B B SR 10 R
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FIG. 4. Arrhenius plot of the mean waiting tide(T)) versus
the indirectly determined counterpart(T));,q. For comparison, 5
we also show the inverse one-particle diffusion constab(T) 0.0 —_ . —
multiplied by a constanta®=1.0), see Ref[19]. Error bars are of -06 -04 -02 0.0 02 04 0.6
the order of the symbol size.

.

FIG. 5. Sketch of the TS search with the ridge method.

It turns out that, within statistical errop(eyg ; T) is iden-
tical to the corresponding distribution of minimae;T).
One would expect this for highyg , because no pronounced
MBs are observed there. Considering a deep MB with man
minima, this will equally effect no large difference between
p(ems;T) and p(e;T). The reason is that the group of
minima neareyg carry the largest part of the population.

Since they are close tgg, transferring their weight teyg = £(t+). As a way out, we let the system perform two de-

whzn compu.ting)(eMBh;T)khas little e;fe?jt. ‘ Figs. 2 scents in parallel, on either side of the basin border, as sche-
S a consistency check, we use the data from Figs. anfhatically depicted in Fig. 5. More specifically, if a transition

3 to reproduce((T)) _indirectly. via Eq. (2) [de”‘?t.ed happened after timg interval bisection yields the configu-
(7(T)Yindl- The match with{ 7(T)) is not completely trivial rationsy,=x(t) andy,;=x(t+1 MD step). From these, by

since the data fof7(T)) and¢(eyg; T) were gathered from ¢, yhar interval bisection on the straight line betwagrand
a linear simulation run, whil¢(eysT)) results from se- y “yne gistance to the border may be further reduced if
l.egte”d 'V:BS ?jf Certar']rEMB ,.whfare thi system has been arti- necessary, resulting in two configurations, again callgd
ficially place N As shown in F|g: 4.’ the agree.menm(T)) andy,. Close as they are, they still belong to different ba-
and(7(T))inq is good forT<1 within the possible accuracy. ging™|f we not let descenyl, andy, in parallel, they first

Notg t.hat there is no free fit parameter between them. The, . ¢ along the ridge towards the transition state until they
deviation atT=2 can be explained by the fact that g, )y hend off to their respective minima. This separation is
(r(evsT)), aboveT_=1, and e_speual_ly for the higkyg , clearly not wanted, so from time to time we reduce their
departs from Arrhenius behavigsee Fig. 23], so that the distance by interval bisection. After a few iterations

parametrization of Eq(7) is no longer valid. (descents interval bisectioh the vicinity of the transition

So far, all barriers or trap depths have been derived indigtate is reached in most cases. We then use a short minimi-

rectly, from the temperature dependence of waiting times. A . . =
link to the PEL structure is still lacking. For instance, the zation of the auxiliary potential = 1/2|FF(x)|* followed by a

activation energies€,,{i) of this section are expected to few steps of Newton-Raphson type, which bring the search

reflect the local topography of the selected MBs. Indeedforthe TS to a quick convergence. Besides a vanishing force,

they can be identified from the barriers of escape paths, a{[ge resulting configuratiod has an hessian matrix with one

will be demonstrated in Sec. V. negative ((ajl_genvglue. A]j{ter small dl:;platt:ﬁmegf[s alcing_ t_he
First of all, the barriers between single, neighboringCorreSpon Ing €igenvector, one reaches the adjacent minima

minima are of great interest. These are known once we havi a steepest desc_e_nt. This yields the reaction (i {(s),
in hand the corresponding transition states. wheres is a curvilinear parameter. We sgf0)=¢, {(So)
=&y, and{(s;) =&, wheres, is negative.
It can happen, though, that no TS betwegnandy; is
IV. NONLOCAL RIDGE METHOD FOR FINDING found, but that the interval bisection locates a third mini-
TRANSITION STATES mum. The basin border splits into two at this point, and no
direct TS between the initial and final minimum is available.
Thus, we also have to split the descent along the basin border
We now describe how to determine transition stdfe3s into two processes and then continue separately. If the two
from the simulation, by what we call th@onloca) ridge  descents are successful without further bifurcations, we are

method. The principle idea is that TSs are local minima of
basin borders. They can be pictured as the lowest points of
mountain ridges on the PEL. If the system crosses a basin
Yorder at timet, the steepest descent path starting fra(t)
should end up in a TS, see REB3]. In practice, however,
the descent will deviate from the ridge due to numerical er-
ror, finally ending up in the minimunt,=§(t—) or &;

A. Description of the method

031506-6



ENERGY BARRIERS AND ACTIVATED DYNAMICS INA.. .. PHYSICAL REVIEW EG67, 031506 (2003

finished and have the optimum reaction path that takes anly negligibly contribute to relaxation rates. Striving for the
detour via a third minimum. In such a situation, the RP issimulation of low-temperature hopping dynamics based on
clearly not very useful. It has to be stressed that bifurcationshese method27,41,43, one may therefore suffer a consid-
are no artifacts of the ridge method, but a topological featurerable reduction of efficiency. In our point of view, this ren-
of some basin borders on the PEL. Fortunately, as a signatuders straightforward molecular simulation rather competitive
of strong anharmonicity, they are quite rare and happen téor many purposes.
occur only in the high-energetic regions of the PEL. For the Furthermore, we mention two complementary means of
escapes from long-lived MBs, they are of no importance. studying energy barriers. The “lid” algorithm, proposed by
A similar algorithm is described in the literatuf&3], Wevers, Scho, and Jansef%3], is able to find upper bounds
which, instead of minimization and interval bisection, usesfor the depths of single basins. By performing random walks
local maximization betweeg, andy; to prevent the con- pelow different potential energy thresholds and by regular
figurations from moving apart. Although computationally minimizations, one is able to compute the elevation neces-
less expensive, this method is not appropriate for our pursary for transitions to neighboring minima. From a more the-
pose. As an effect of the high dimensionality, the local shap@yetical perspective, Schulz has specified a relation between

of the PEL aroundy, andy, gives no direct clue to the angition rates and the overlap of vibrations in neighboring
membership to basins. When descending, one may thus I°°§%sins[44].

the important property of, belonging to the basin af, and
y, belonging to that of;. This effect has indeed been re-
ported in Ref[33].

In the literature, plenty of methods exist dealing with the - 2 i o
computation of transition states. For our purpose, howevefliary potentialV=1/2F(x)|* and looks for its local minima.
each of them has some kind of drawback, which we briefljVé now discuss this method and compare it to the ridge
discuss now. One kind of them starts from the knowledge ofnethod.
the initial and final minimuni34—-37. Common to the latter
methods is that, after a more or less educated guess for an B. Comparison toV saddles
initial trial RP, one iteratively improves the RP according to
some prescription, e.g., the minimization of an action func-fi

> d the relevant barrier for a transition, i.e., a first-order
tional. Two sources of erroneous results have to be addressg ddle on the basin border next to the point where the border
in this connection. First, the two minima in question have to P

. ; o . was crossed. In contrast, the method using the auxiliary po-
be true neighbors. This can only be verified by locating two  —— ~_ ) o .
points close to the basin border, e.g., by interval bisection Oieent|aIV:1/g|F(x)| as applied in recent _Stljldlé.]55—17,3(}
the initial trial path. The numerical cost is not small; for our has two major drawbacks. First, teminimization locates
ridge method, for instance, about one third of the calculatiorsaddlegwe call themV saddle}, even if they are not acces-
tir_ne i§ ansqmed by fixing/g .and y1 (depending on the sible kinetically. This is because the expressiditiF is not
m|n|mlzat|on mtervgl of the original MD run Sgcond, the positive [H=H(x) denotes the hessian &f(x)], i.e., Y,
iterative path optimization may become stuck in a local eX-mjnimization canclimb upto a saddle. Second, one obtains
tremum, due to an unfortunate choice of the initial path.  higher-order saddles and, most frequently, nonstationary
_The other kind of TS search methods start from an initialygints (shoulders These configurations are of no use to use
minimum and climb up to a transition state guided by thepecayse we specifically analyze paths over the lowest barri-
shape of the PEL. Just walking against the force, howeveg s on pasin borders. i.e.. transition states.

would be a fatal strategy, as one can see by turning the PEL 14 shed more light on the interrelation of TSs and

upside down: ending up in a TS is numerically impossible, L .
since one quickly runs into one of the PEL singularifiggo V-saddles, we minimized/ by steepest descent, starting

or more identical particle positiohsEigenvector-following from configuration(t) only if £(t) # £(t+ 1 MD step)(like

algorithms[38] overcome this defocusing of steepest ascen¥o in Fig. 5). In other words, we calculated saddles exactly
paths by walking into the direction of negative local PEL qt transition t_|mes_. If this yielded the correct TSs, our more
curvature. The activation-relaxation technique by MousseafiMe-consuming ridge method would be clearly useless. The
and co-workers, in contrast, steps against the force in théifferenceAe= ;- ers specifies the overestimation of the
direction leading away from the minimum, while descendingtrue barrier by theV saddle. It may also happen that the
the PEL perpendicular to that directi¢p89]. A drawback of  index of theV saddle(the number of negative eigenvalues of
the latter methods is that the choice for the next TS to mounghe hessianis different from one. The distributions afe
is not well under control. From the minimum, a starting di- and the index are shown in Fig. 6 for=0.5. Obviously, the
rection is chosen, either by purely random displacements ay gaq4qjes considerably overestimate barriers and the correct
by some hard-sphere-like particle moyad]. Unfortunately, -

TSs are only found very rarely. Moreover, most of tie

the number of escape directions from a minimum is gener ) . :
ally very large[at leastO(Nd) as we found in the BMLJ65, saddles have an index different from one, i.e., are no TSs at

see also Ref40]], whereas the majority of those is dynami- all. In turn, the energy of the TS is never undersold by a
cally inaccessible at lowl. Hence, eigenvector-following saddle. In conclusiory saddles turn out to have the undes-
and activation-relaxation techniques yield many TSs whichired quality of being decorrelated from the relevant TSs, i.e.,

Finally, we remark that in the field of supercooled liquids,
another method for locatinggeneral stationary states
(saddles has become quite fashionable. One defines the aux-

The advantage of the ridge method is that we definitely
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FIG. 6. Comparison of transition states, obtained via the ridge 0.5 1.0 1.5 2.0 2.5

method, with minima of the auxiliary potenti&. Starting points

for saddle computations lay close to basin borders. Main plot: hlsiurbances of lengtld= 0.7, which corresponds to a displacement of

togram ofV saddle minus TS energies. Inset: histogram of indices,y 009 per particle. Left inset, dependencesoof pgg(T: 8)/ 6
of V saddles. for T=0.5 andT=0.6. Right insetpgg(T) plotted linearly against
T.

FIG. 7. Population of basin bordepgg(T) obtained from dis-

from the barriers that control relaxatigeee Sec. Vl

_ _ (the constant is set to unity for conveniepcghe validity of
C. Population of basin borders Eg. (10) is demonstrated in the left inset of Fig. 7, where

After Angelani and co-workeril5,16], the mean index of Pes(T;6)/6 has been calculated as a functionsfWe find

V saddles vanishes dt.. Therefore, as they have argued, that pBB(T;5)/5. IS cqnstant With.in stqtistical error beloﬁ/.
dynamics abovd is dominated by saddles, in that there are _ 1.'2' As'a'n ongntaﬂon, the typical dlstance. between ”?'gh'
always some unstable directions available that allow the sy goring minima is larger than 2.0, whereas intra-MB neigh-
tem to relax, without traversing an additional energy barrier. ors on average are Igss than 1.0 apart. .
PassingT., the mechanism suffers a drastic change, andé The_mam part .Of Fig. 7 shows results fpgs(T) in an
abruptly, one is faced with an index of ca. zero, i.e., saddle rThenius plot, with §=0.7. Over the whole temperature

have to be reached via thermal activation. Since the precee ange conS|der§¢JBB(T) IS Arr.hen'|us-l|ke..The apparent ac-
Ivation energy is ca. 1.8, which is small in comparison with

ing subsection may cast some doubs on the significanie of tEe typical values observed for MB lifetimes. However, the

saddles, we now want to discuss an alternative analysis q mperature dependence becomes stronger if we impose the

the way the population of minima versus unstable Conf'gu'constraint of a minimum distance between neighboring

rations evolves upon decreasing temper:?\ture. More Specn?ﬁinima (data not shown In this way, we eliminate the fast
cally, we determine the population of basin borders, intra-MB transitions, which have small barriers.

1 In any event,pgg(T) features no noticeable change in
Pea(T)= ﬁf dBJ dxe AV 5(x—B), (8)  behavior when approaching and crossifig In a different
graphical representatiofsee right insgtone might wrongly

wherex integration is over the noncrystalline part of configu- conclude thapgg(T) disappears at some finite temperature.
ration space, also in the partition functi@(T), andB runs Stated dlfferently, thg data in the main part of Fig. 7 suggest
over all basin borders of the PEL. This expression is impracthat the increasing timescale separation upon cooling hap-
tical in numerical simulation; one may rather ask if, for someP€ns rather smoothly, with no distinctly new physics emerg-
instantaneous configurationthere is a basin border nearby. iNg neéarT.. This is in qualitative agreement with the work
In this case, small random displacemefiength 5< R, di- of Schraderet al. [11], who use the incoherent scattering
rection w e RNY, |w|=1) possibly lead into another basin, functions from hopping dynamicqt) to deal with the sepa-
i.e., £(x) # &(X+ wd). This kind of PEL analysis has recently ration of intrabasin and interbasin dynamics. There, the ini-

been carried out by Fabricius and Starip#5]. One calcu- tial short-time decay of scattering functiofguantified by
lates the so-called nonergodicity parameter nothing else than a

measure for the population of basin borders.

Pea(T;8) =(P(£(X) # &(X+ wd)))1 0 9
which is the probability that random disturbances will V. ENERGY BARRIERS FROM PEL TOPOLOGY
cause crossings of basin borders at temperdiifée brack- A. Return probabilities and metabasin definition
ets denote the canonical plus the average over the random ) ) )
directionsw. One obtains the behavior With the tools of interval bisection and TS search, we are
now in the position to analyze the escapes from MBs in full
pee(T; 6)—consX pgp(T)d, J—0 (100  detail. When a MB is left, we first resolve all minima visited
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0 5 10 15 20 FIG. 9. Distribution of MB diameterd defined as the maximum

] ] ) distance between all minima that were visited during a MB lifetime.
FIG. 8. Potential energy along the reaction pg(s), which  The 5 peak from single-minimum MBs has been omitted.
was calculated from the dynamics during® 1D steps, at the end

of a typical MB of life span & 10° MD steps. The mapping afto ) o .
time is nonlinear. The small barriers f@<5 belong to fast aSSUM&La<50%. This criterion has already been used in

intra-MB transitions.pp,ce« denotes the probability of returning to Sec. ll.
the bottom of the MB. As a comparison, the potential energy at that Based on these insights, we can now provide a more com-
temperature T=0.5) fluctuates arounet 249.3+6.1. plete description of MBgFig. 10. First, the ground state of

a MB has to be identifiedkernel minimum, since the defi-
nition of ppac rests upon it. At low enough temperatures, the

during the escape. Second, all corresponding TSs and, if d%—ernel minimum will certainly be visited during the MB life-

si'red, reaction paths are calculated. A_n example is shown 'fme, due to the very low barriers among the minima on the
Fig. 8. The successive RPs were spliced together to a longom of the MB. Second, for minima beyond the distance
multiminima .RPg(_s). Ong might take the energy profile, d.a from the kernel, we sepp.c to zero. Third, the prob-
V({(s)), depicted in the figure, for one of the common car-gpility p, .., for returning to the kernel before reaching a
toons of a PEL. However, it rests upon real data. Berry an@jistance greater thath,,, can be assigned to every remain-
co-workers have produced similar charts for the relaxation ofng minimum and, in principle, be computed by simulation.
small atomic clusters towards their global minif®#2,46.  To this end, one repeatedly starts in the minimum and checks
For s<5 one can see the typical back-and-forth hoppingif a recurrence to the kernel occurs. Fourth, the minima with
among the ground minima of the MB. Obviously, the corre-p,,.,>50% are defined as the MB.
sponding barriers are not large comparedktd =0.5. The Please bear in mind tha,, will in general depend on
escape starts at=5. The first minimum reached is very temperature, since it is defined by dynamics. Correlations
unstable as expected from the small backward barrier. Inamong minima are expected to increase towards lower tem-
deed, if we repeatedly start in this minimum and perform aperatures, implying that MBs are no static concept but rather
number of short simulation runéhere: 99 with different
random numbers, the system will return to the bottom of the
MB with probability py,o=98% and leave the range of at-
traction only rarely. Thus, the escape is far from being com-
plete at this stage. Going to the next minimum, the return
probability decreases, but does not drop to zero. We say that
the system is free ipyaex is smaller than 50%. As the out-
come of this investigation, we obtain the energy barrier sur-
mounted before the first minimum witp,,<50% was
reached, see below. The exits from other long-lived MBs
mostly look the same as in the example, while the escape in
one jump is not common. In other words, MBs usually have
the form of a funnel with some ledges on the w§,47.
Minima with ppacc>50% are said to belong to the MB. This
criterion is reminiscent of the definition of dynamic bottle- )
necks introduced by Chandler and co-worket8]. Phec>50%
An interesting property of a MB is its diametelr It is
defined as the maximum distance between its minima. For G 10. Sketch of the configuration space around a MB, crosses
the MBs found in the simulation &t =0.5, the distribution  rgpresenting minima. Large crosses are the highly populated
of diameters is depicted in Fig. 9. Thepeak from single-  minima on the bottom of the MB. The shaded area comprises
minimum MBs has been omitted. No MB witth>d,,,=4 minima of high return probability to the kernel minimunp
has been found. As a consequence, if a minimum has a dis-50%). By definition, these constitute the MB. The bent line is the
tance larger thad,,,, to some MB minimum, we can safely system trajectori(t) entering and finally leaving the MB.
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grow with decreasing’. In Fig. 8, e.g., the minimum &  difference between the minimu, and the TS betweea

~6.5 has the “critical” value 0fpya=47% atT=0.5. Al-  andb). Hence, the rateg,, for single transitionsi,— &, are

though we do not know the details of PEL connectivity characterized by

around this minimum, the small backward barrier suggests

that the minimum would exceegl,,=50% for still lower Uapx e PFab, (13

temperatures, thus joining the MB. However, we may also ) .

conceive some situations where a critipgl.e~50% is quite A Justmcathn of thIS assumption, even for temperatures

insusceptible to temperature changes. This is the case @0VveT., will be given in Sec. VI. _

backward and forward barriers are of about the same size. Generally, the probability of upward jumps is small at low

We will come back to that issue later. T. Hence, climbing out of a MB in a back-and-forth fashion
We further note that the explicit computationf,qcan  (€:9- éa=&a+2 and £,.1=£,.3) is not probable(This is

be extremely expensive. This is mainly the case whggis  reminiscent o_f the fact that the act|vate(_j crossing qf sm_gle

small, and complete escapes beyadng, have to be awaited. potential b.arners happens on a shor_t time scale, e, ina

However, the exact value gy, iS Of no great interest. In rather straight way.In contrast,lexcgrsmnsfrom th main

fact, it suffices to know whethep,,u<50% Of Ppack path may happen. As shown in Fig. 8, the minimumsat

>50%. This decision can often be reached to a high confi=6-5 IS revisited as=9 after taking a look at another mini-
dence within few trials. mum (s~8). The latter does not appear again later on.

The MB lifetime algorithm in Sec. Il is based on the Clearly, running into such “dead ends” should not contribute
detection of back-and-forth jumps between minima. Oneto.th.e escape rate via_the successful main path. We .therefore
mostly observes the dominant minima on the bottom of theeliminate such excursions from the sequence of minima, Eq.
MBs, whereas the more elevated members are only weakl{12). From these remarks we take the liberty of assuming
populated, see Fig. 10. If MB lifetimes are to be read from ghat no minimum appears more than once along the escape
simulation run, it suffices to notice when the set of dominant®ath,

MB minima has been left, since the visits to the elevated
minima at the end of the MB lifetime happen quite rapidly. €a* &, a%b. 4

Thus, the algorithm of Sec. Il reduces the MB to the most  \ye are now interested in the contribution of the path, Eq.
populated minima, which is sufficient for the purpose of life- (12 to the total escape rate Ed). Particularly, we have to
time calculation from a given simulation run. In contrast, for .gnsider the question of how many single transitions are rel-
the prediction of MB relaxation behavior as pursued in this eyant for the escape process. The probability to jump from
section, the minima close to the rim of MBs are of specialyinimum £410 €441 IS Uaas1/0a, Whereg, denotes the

interest. Their elevations from the bottom of the MB give thej,yerse lifetime of minimumé, . The rate of escape via a

depth of the MB. longer pathway now is given by the rate of the first jump
times the probability that the minimg, (a=1,..M) are
B. Barriers for metabasin relaxations visited in correct order thereafter,
In the spirit of the above remarks, we will now carry out
a systematic investigation of the energy barriers overcome i = go 292 Imoam (15)
when escaping MBs. The goal is to recover the apparent 91 G Ov-1

activation energies computed in Sec. Ill from PEL topology.
The mean lifetimé 7;) of MB i can be expressed in terms
of escape ratey; , of different relaxation channels,

In this expression, we have neglected the residence times in
the elevated MB minima§;, &,, etc) during the escape,
which, at sufficiently low temperatures, are short as com-
pared to the total MB lifetime. With the help of EL3) one

<Ti>7l:§ Yia- (1D calculates
M-1
In general, eachy; , reflects a multiminima escape path - @In Yi.a=Eort agl Pref@)(Eaa+1—Eaa-1),
lo1 é12 IM—1Mm (16)
So— &8 du-1 — éu (12 wherep,e{a) =ga s 1/9a is the probability to jump back to

minimum a—21 from minimuma. In the derivation of Eq.
as the one shown in Fig. 8. Her&, is the kernel minimum  (16), we have neglected a term proportionaBg, ., ; minus
(éa# &q,@a>0) andl,y is the TS foré,— &,. Suppose that the average barrier when jumping froato a neighboring
the numberM of jumps in the sequence E@l2) is large  minimum other thara— 1. This term strictly vanishes when
enough to completely quite the MB’s range of attraction, i.e. performing the final summation in Eq11). Moreover, we
Prac M)=~0. For the escape shown in Fig. 8, elyl=7  have made use of Eql4).
would be fine. One possibility for calculating activation energies from

We further take for granted that the rates for single barrieiEq. (16) would be to consider the complete paths, ER),

crossings follow quantitatively—uvia transition state theory—where pp,c{ M)=~0, and determine all terms in the sum of
from the height of barrier&,,=V({.p) — V(&) (the energy  Eg. (16). However, an accurate computation of all the de-
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sirgd Prel(@)’s wpuld even be more costly than the determi- zo-P E ——s703] | 15F —5303] ]
nation of the point where,,. changes from above to below (E) - E=6.7+05 P(E) ~E®=53:05
50%. We therefore use the following approximation of Eq.,_| [ Ee=41205] “En=37:05

(16), which is in conformance with our previous definition of
MBs. Let m(T) be the first minimum along the path, Eq.
(12), where pya<50%. Then, for alla<m(T), we set  10f
Pred@) to unity, while fora=m(T) (i.e., outside the MB

we letp,e{(a)=0. Thus, 5
-1
d g —
— (O E ; 0L, . !
~gg" Ye~Eio=Bort 2 (Eagi1~Eag 1) o 5 10 5 5 70
30 T T T _l i T T K
= 40} P(E
— 5.2+0.2 -
=€m-1— €0t Em- 1,m: (17 ] P(E) -.E%Z=5_6io_5 ( ) —-E:‘ ;ggﬁg
~Ey =2.9:0.5 sl —Ey=4.0105|

wherem=m(T). In this way, the terma<m(T) in Eq.(16) 207
are given higher weights, whereas thosesfm(T) are ne-
glected. We will dwell on the quality of this approximation
later on; see also Reff49]. 10
Note that, due to the temperature dependence,f,
energy barrierg; , generally increase upon cooling: At high
temperatures, in contrast, correlations among minima ar g |

small, such that MBgeven the low-lying consist of only 0 5 10
one minimum. This effect is included in E@l7) by the
temperature dependencerafT). FIG. 11. Bold curves: Histograms of barries ., overcome

when escaping single MBS €1, 2, 3, 4 atT=0.5). Light curves:
Respective histograms of barrieks,; from first jumps. Apparent
activation energie& ,{i), mean barrierfggt i), and mean barri-
We now relate the lifetimes of single, selected M@§ ers from first jump<E,, are given in the figure.

Sec. llIB) to PEL barriers. By repeated starts from these

MBs, the local PEL topography is sampled thoroughly, yield- e now continue the discussion of the temperature de-
ing sets of typical escape pathways. Whenever a MB is Ieftpendence of barriers; .(T). At the example of MB 1 from
we locate the transitions by interval bisection and obtain thq:ig_ 11, we have carried out the above program for two other
corresponding TSs with the help of the ridge method. Thenemperatured=0.6 and 0.8. The obtained distributions of
Ppack IS calculated for the minima visited, until for the first barriers, P(E; ), are shown in Fig. 12. We find that the
time, Ppack<50%. Finally, the barrieig; . is computed  ggtimates for the apparent activation energygd1;T
according to Eq(17), wherea(k) denotes the escape path _ _ est/1.7_ _ e
=0.6)=6.9=0.5, andE,;(1;T=0.8)=6.8=0.5] remain in

chosen at thekth escape. The histograms of barriers are ; P
shown in Fig. 11, for the four MBs of Fig. 1, ai=0.5 good agreement witl,,{1)=6.7+0.3 from Sec. lll. The

. . distributions of barriers, however, grow narrower with de-
=1.1T.. Due to the slow dynamics at this temperature, the d

) . creasing temperature. High barriers contributing to the right
computation ofy,cwas rather expensive. Nevertheless, theing of the distribution become inaccessible at Igwi.e.,

statistics should be sufficient for a reasonable estimate of thg, . "o ative weightsp; ,, of the corresponding escapes be-
i,a

appa_trgnt activation energy. To_this end, we expEggg(i) of come small. This suppression of high barriers at [bvg a
MB i in terms of the contributiong; ,, trivial effect.

d et More interesting is the vanishing of small barriers upon

@Wﬂ)*(ﬂ)i EiaYia=2 Pia=Esyi), (18  cooling, i.e., of the barrierE<5 in the figure. Naively, one

“ “ would expect these to dominate the escape rate atTlow
However, due to the stronger backward correlatigims

where Egs(11) and(17) have been used. Thus, the barrierscreasedp,,.), jumps over these barriers eventually do not
E; ., are weighted by the probabilitigs ,=v; ,/2vi sthat  suffice anymore to escape. As described above, the respec-
the escape happens via pathwayNote that thek; () cor-  tive escape pathgy—-- —&memy» grow longer, and the bar-
respond to the pathways that wegoserby the system, i.e., riers change to a different, mostly larger value.
they are already weighted correctly by ), compare Eq.
(18). ThereforeEggt i) is just the average of th&; . The
values ofE,,{i) and ngf i), given in Fig. 11, are in good
agreement. Also shown in Fig. 11 are the distributions of first During our analysis of the escape times in Sec. Ill the
barriers Eq; belonging to the steg,— ;. Evidently, the apparent activation energids,,{eyg) emerged as useful
neglect of the multiminima nature of escapes leads to a comyuantities. Although the above results already indicate that
siderable underestimation of apparent activation energies. barrier hopping is the relevant motional mechanism, a clear-

C. Single metabasins

D. Average over metabasins
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FIG. 12. Normalized histograms of barridgg, overcome when FIG. 13. Histogram of barriers from a regular MD run Bt

escaping .MB 1, foff=0.5, 0.6, and 0.8. The numbc_ars of contrib- =0.5 (bold). Neglecting the contributions of the last transition state
uting barriers are 42, 72, and 59, respectively. Estimated apparelate usinge.— eyn), we find smaller barrieréight line). The bar-
€., m , .

- - . est . - . .
activation energies-op{1.T), are given in the figure. riers Eq; from only the first jumps are given as the dotted line.

ap|

cut verification requires the comparison with the average baréeem to be fairly uniform regarding this property. For the

rier the system has to cross when leaving a MB with energy,; .o sample of MBs visited during an MD run, EQ.9) then

€mB- . takes the form
For this purpose we now carry out a similar program as

before, with many MBs visited during an ordinary MD run. S 7 E,
We concentrate on MBs with lifetimes of more thar? D ngfp( €vB) = ,
steps(179 MBs at T=0.5. When such a MB is left, we 27k
locate the transitions by interval bisection and obtain the . ]
corresponding TSs by the ridge method. Then, we calculat@here summation goes over MBs of enekgy; . Again, the
Phack and identify the barrieE,=E; .4 according to Eq. correct weighting is |mpI|C|f[ here. Thl§ expression can be
(17). The histogram of barriers is shown as the bold line inShown to converge to the right-hand side of Etg) in the
Fig. 13. For comparison, we also show the barriers minus thdMmit of infinitely long sampling. In Fig. 14 we show the
contribution of the TSE,, ;. Ignoring multiminima cor- ~ values ofEgof emg) determined in this way. They perfectly
relations, we further show the histogram of first barriggs ~ agree with the apparent activation energies, derived from the
of escapes. Evidently, the neglect of TSs or of backwardtnalysis of relaxation times at different temperatures. Thus
correlations leads to much smaller barriers. we have a clear-cut proof that the apparent activation ener-
From the above barriers we will now calculate estimatediesEap{ evp) are indeed related to barriers on the PEL and
of the apparent activation energigg,{ evg). When the av- thus reflect activated behavior agmﬂcantly_abdl(@ _Th|s
erage over lifetimes of different MBs is considered, each MBagain demonstrates that we not only deal with the right order
i acquires a We|ghtp| Corresponding to its probab|||ty of of barrier sizes, but we alsquantitativelylink PEL topogra-

occurrence, phy to dynamir_:s. . o
For comparison, we included the apparent activation en-

<T>:2 o(7) ergy which results, if only the first transitions of escapes,
AN Eg— &, are consideredEq;=V({o) —€o]. One ends up
with much too small apparent activation energies. Again,
multiminima correlations turn out to be crucial for the char-
acterization of MB depths.
d () In principle, the results of Fig. 14 may slightly change if
—In{7(emg ;T)>~E %2 Pi oEi o, (19 all MBs rather than those with lifetimes larger thar? 0D
dg r (rlewg:T)) & T steps were considered. However, our analysis has clearly re-
vealed(see, e.g., Fig.)lthat the depths of MBs of similar
where summation goes over MBs of eneigys . As in Eq.  €ug’s only vary mildly. Thus, inclusion of MBs with smaller
(18), the barriers in Eq(19) are weighted according to their values ofr would not significantly change the values of the
probability of occurrence, but, additionally, with the respec-apparent activation energiEégtp(eMB).
tive MB lifetimes. Finally, we show that these results, in conjunction with
In Eqg. (19), we have neglected terms stemming from thep(eyg;T), largely explain the behavior of the diffusion con-
variation of ¢;'s with temperature. This is justified, since the stantD(T). This is a conceptually important step, since we
¢;'s belong to the sameyz . Their relative weights will only  link D(T) to purely structural and thermodynamical quanti-
vary if these MBs differ considerably in barrier heights. As ties, see Eq(5). The key is the mean lifetimer(eyg ; T)) of
already stated above, however, MBs of the same energylBs at energyeys, Which is parametrized by,(eyg) and

(20

At fixed €z, the analog to Eq(18) can then be derived

031506-12
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FIG. 14. Espf ws) (Fig. 2 vs estimatecEg, (eyg) from PEL

barriers. Considering only the first jumps of escapes, we find

much smaller estimateE; ( eyg)]. Data stem from a regular MD

ap

run atT=0.5, where MBs of lifetime greater than 18D steps
were analyzed179 MBs, see Fig. 13

Eapd ems) [EQ. (7)]. The former,7o(eyg), however, has not
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FIG. 15. Comparison of the inverse diffusion constam (/)
with the prediction 1D .((T) from Eq.(21), 7=200.

&teps each MB The goal was to observe how the system

tries to climb the different RPs. To this end, we projected the
instantaneous configuratiof(t) onto each of the RPs, ac-
cording to

si(H={s":[x(t) = &i(s")l|=minl|x(t) = &i(s)[},

been deduced from PEL properties. Its variation with MB s
energy is not stronffFig. 2(c)], so we can hope that setting it

to a constant will be a good approximation. Thus, E4). which means the point on the RP next(). Due to the

long residences in the MBs, motion therein is largely equili-

becomes ) brated. Hence, if the potential energy profilég;(s;)) along
a et the reaction paths are of importance for the transition rates
~ : BESS (€mp) = _ ;

D(T) 6N, J devpP(enp T)e "rand VB =Deg(T). we expect that the populatiops(s,) of the RPs follow from

(21) Boltzmann’s law,
pi(s))cexp{— BV (s)}Yi (s)=exp{— BF|(s))}.

The vibrations perpendicular to pathare accounted for by
the harmonic partition function

The estimated diffusion constabi,s(T) is shown in Fig. 15.
The agreement dD(T) with our estimate is satisfactory be-
low T=1. The deviation aff=2 is due to the depart of
(7(ewg;T)) from Arrhenius behavior, see Fig(&.
VI. BARRIER CROSSING YIL(SI):J dy exp — gZV Mﬁ} 5(y-t(s),

When making use of Eq13), we presumed that the bar- - .
riersV(Z,p) — V(&,) In fact are the determinants of the tem- wh,ere the or|_g|ny=0 corresponds t(.) the p"m(s')’ the
perature dependence of rates. The excellent agreement HeeS are the eigenvalues of the hessian maHA(>s,), YV the
tween Eg,fevs), determined from dynamics, and components ofy along the eigenvectors, ands) is the
Eepdems). from the analysis of PEL barriers, strongly indi- tangent to the reaction path.
cates that this presumption is indeed true. We will show here The upper inset of Fig. 16 shows an exampleds) vs
in a detailed way that &= 0.5=1.1T,, escapes from stable Fi(S))/kgT. The population of the reaction path follows
MBs are perfectly activated. More precisely, two conditionsnicely the prediction from its energy profile. For RPs with

are fulfilled, (i) the potential barriers are much larger thancomplicated shapes this correspondence can be disturbed.
ksT, (i) rates follow from the 1D energy profile of the RP The worst agreement of the considered RPs is shown in the

plus corrections from perpendicular curvatures. second inset. Still, a clear correlation of RP population with
We will check these conditions explicitly here by an €nergy is present. We_ compiled the results for all ten RPs in

analysis of escape dynamics out of MBs. We made the obFig- 16 as a parametric plot ofInp, vs F, /kgT. Curves of

servation that during every escape from a stable MB, at leastOPe one result from a perfect equivalenceppfo F, /kgT.

one single barrier larger thankT must be surmounted. Here, we find an average slope of 0.92. Since transition rates

Moreover, this larger jump is mostly undertaken from one of2re proportional to the population of TSs, the implication of

the lowest minima of the MB, compare Fig. 8. From the these results is obvious: MB jump rates follow from energy

repeated escape runs of Sec. |1l B, we selected the most fréarriers. We finally note that the vibrational termsVlr(s)

quent ten transitions of that kind. From the respective TSsare minor as compared #V(s)). .

£, we computed the RPs, denotg@s), | =1,...,10. We then In view of these results, it is a little surprising that the TS

investigated the motion within the MBs over a long period oflocation with the help of the auxiliary potenti® was that

the simulation, where no escape had happened MID  unsuccessfulcf. Sec. V). Since the RP population suits well
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T T 1) should correspond to the depths of these MBs, i.e., to the
n slope=0.9 X typical heights of barriers that surrounded the MBs. Indeed,
this has been quantitatively confirmed for the four randomly
_ -AInp(s) selected, low-lying MBgsee Fig. 1L A direct conclusion
o AF(s)/ksT: 1 from the constancy dE,, (i) is that the system does not find
1 smaller and ever smaller barriers upon decreasing
Although not of statistical relevance for the whole PEL,
. the results for the four single MBs give us a detailed picture
of the local PEL topography. An important outcome is the
variation of barrier heights with temperature, see Fig. 12. We
] have already discussed that low barriers increase upon cool-
| ing, due to enhanced multiminima correlatiofgrowing
| MBs), while unnecessarily high barriers are suppressed. Both
UF(S)IKBT | effects seem to cancel, so that the mean baﬁjﬁg remains
4 | constant, leading to Arrhenius behavior beldw 1. This
ol AF(s)/ksT T 3 | cancelation may be fortunate; at least we can offer no expla-
P e R R nation for it, here. As depicted in Fig. 12, the distribution of
0 2 4 6 barriers becomes more and more narrow when going from
FIG. 16. Parametric plot showing the correspondence ofT=0.8 toT=0.5, but the mean value, i.éEgztp(l), remains
—Ap(s)=—Inp(s)+const to the free energy profildF(s)  constant. The constant apparent activation energy of MB 1
=Fi(s))/kgT+const,| =1,...,10,T=0.5. All curves were shifted to  gown toT=0.45 implies that the mean value of the distribu-
start in the origin. Insets: comparison of the free energy profiles ofjon of barriers has not increased. We thus speculate that the
two reaction paths with the population along the path. growth of barriers due to increasing multiminima correla-
tions has essentially come to an endr'at0.5. Although the
the harmonic description of the RP, one expects that motiofemperature dependence of the barrier distribution has only
near the TS is quite harmonic, too. Minimizifgin an har-  been analyzed for a single MB, the constancy of apparent
monic potential directly yields the stationary state. Conseactivation energies of the other three MBs and the tempera-
quently, one should easily find the TS when starting from &ure independence &,,{ €yg) support this idea. Stated dif-
configuration as~0. After Sec. 1V, this is not the case, so at ferently, the development of superstructures of minima
least minor anharmonicities must be present. seems to cease at some temperature abgve
Expressed byppa.c. this means that no minimum with
<50% will surpas =50% upon further cooling,
VII. DISCUSSION &bjcsk being unable tho jipirk;actkm MB inp question. Hence? an

The metabasin concept is at the heart of the present stud§ScaPe sequence found at one temperaf®.5 has the
The important insight is that, upon cooling, not only the timeSa@Me length at another one, i.e., from some temperature on,
scale of intebasin transitions becomes well separated fromthe minimum &y r) remains atppa<50% for T—0; we
intrabasinvibrations, but also that a similar separation occursh€n say it terminates the sequence. It is an interesting ques-
betweenMB hopping and intraMB transitions. Recently, tion under what circumstances suc_h termination h_appens. A
Biroli and Kurchan have analyzed the general problem offiVial €xample would be a “transit” minimum with one
defining metastable states in glassy syst€50. They con- backward and one forwar(_j exit, where taking the forward
clude that one has no absolute notion of a state without mai2ne 1eads to a minimum withpq~0. If the backward bar-
ing reference to a time scale and hence to dynamics. Also tHéer was higher than the forward on@yscwould go to zero
present definition of MBs relies on the dynamics of the sysfor T—0. On the other hand, the minima inside MBs gener-
tem. It is, however, independent of time scale and excludlly feature growingo,qs upon cooling, because the ener-
sively depends on the,,. values, which directly reflect the 9etic gain of returning becomes more and more attractive.
topological properties of the PEL. Ideally, thus, forT—>0! we would havepback—d_ within .

Our MB definition (see Fig. 19is devised to eliminate MBS, andppac—0 outside. This provides a plausible, physi-
the information on trivial back-and-forth jumps within MBs. cal basis for computing barrier heights according to &),

This strongly correlated type of motion is reminiscent of theat least in the limiff— 0. Clearly, a more detailed investiga-
particles’ rattling in the cages formed by their neighbors.tion of the temperature dependencepgfy is necessary to
Similarly, escaping from MBs seems to be equivalent to thddack these conclusiorig9].

breaking of cages and thus to structural relaxation. Guided Second, we analyzed the average relaxation times
by this idea, we have examined MB relaxation in great de{7(ems;T)) from MBs at fixed energyeyg . Again, they
tail. displayed Arrhenius behavior, with apparent activation en-

First, for repeated relaxation from the same MB, we cal-ergy Eapf €vs) (see Fig. 2. which compared well with the
culated the mean relaxation tin{e;) and found Arrhenius ~Prediction from PEL barrier¢Fig. 14). In this connection, a
behavior in all cases. The simplest view is that the appareriecent paper by Grigeret al. [30] is of interest. The authors
activation energieg i) from the Arrhenius-likg 7;) (Fig.  use theV potential to compute saddles in a binary soft-

mea

| S
-0.6-0.4-0.2-0.00.2
4L 0.6-0.4-0.2-0.00

—Aln p(s)

-Aln p(s)
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sphere mixture |=70). From the TSs among these saddlesform of ( 7(eyg;T)) above X limits our description to the
(index one, no shouldgrthey perform steepest descents totemperaturesT<2T.. In any event, we would not have
obtain the connected minima. They define barriers as theared to make quantitative statements on the basis of the
energy difference\U from the TSs to the lower one of the hopping picture above the landscape-influenced temperature
connected minimae=min(ey,€;). Plotting the average regime.

m( 6), they f|nd a curve Sim”ar to OLEapF(EMB)i F|g 14, . From the faCt that we COUId quantitatively I’elate MB Iife'
i.e., a strong increase of barriers towards lower energies. IiMes to PEL barriers belowTz and the results from Sec.
contrast, when carrying out the same analysis for oul!, we see that there exist activated barrier crossing events

BMLJ65, we found a nearly constattU(e), a curve close significantly abovel.. As shown bgfore[19], these escape
to the fi’rst barriers of escapes,, shown in Fig. 14. We processes from stable MBs determine the temperature depen-
l . .

would have expected this result, since the multistep nature(%ence of the diffusion constant also abolg. Thus, the

. eneral statement that hopping events are not relevant there
escapes in the BMLJ65 has clearly been demonstrated. pping

g . - ee, e.g., Ref51)) is not correct for the BMLJ system. This
the other hand, the contrasting result of Grigetal. indi- implies that the ideal MCT can be applied to systems for

cates that the soft-sphere PEL is not organized in multiyhich activated processeteterminethe time scale of relax-
minima superstructures. A clarification of this point would be gtion. Thus it seems that the theoretical description of the
very useful. cage effect in terms of structural quantities, as done in MCT,
Note that E,y{€evg) is of special importance since it works independent of whether the cage effect is purely en-
bridges the separation between dynanjiiffusion constant tropic (like in hard-sphere systemsr is to a large degree
D(T)] and thermodynamicgopulation ofeyg). Clearly, an  based on activated barrier crossing.
understanding oE,,{ eyg) from basic principles is highly Moreover, with the help of the unbiased quantipg(T),
desirable. It is plausible that the simple forBy,{ evg) we were able to measure the population of basin borders. No
=en— evs Can only be expected for a system acting as dndication for an abrupt change of relaxation mechanism
completely correlated entity. In contrast, two independentlycould be observed ipgg(T); in contrast, the separation of
relaxing subsystems should generally show a weaker depeffitrabasin and interbasin motion seems to happen rather
dence OfEs{€vs) ON eyg. This can be seen by a very smoothly (see Fig. 7. Thus, there is no qualitative change
simple argument. Consider two independent, identical sysaroundT¢. . .
tems, with MB energieSe,(vll%, GI(\AZ% and activation energy We finally discuss the relation of our work to the instan-

- g . taneous normal mode approadNMM), which considers the
1,2
Eapdelig’). What can be said abof,,{ eys) of the union average number of “diffusive modesfy(T), to be at the

of these systems, at MB energyp=eGd+€:d? In the  physical basis of diffusiorf12,13,18. From the directions
limit of low temperatures, the apparent activation energy iscorresponding to negative eigenvalues of the hedsixit))
given by mifE.,{ e{id),Eapd €{22) 1. A proper average over (unstable directions one filters out the “diffusive” direc-
different rea"zationg%, E,QAZE);ZEMB_E&% yields E o €vs) tions. Considering the energy profile on the straight lines

of the combined system. Instead of carrying out this averageédlong the unstable directions, La Naeeal. observed ex-
1,2) tremely small barriers, indicating completely “entropic” dy-

~ (12 - ,
\év;ilrjns;éhe fact thap eg”) is @ monotonous function and namics at the considered temperatyrsy. This conclgsi_on,
though reached for a model of supercooled water, is in con-
i (1) = @ ~ trast to our findings of the relevance of energetic barriers. A
O=min[ Eapd €vi), Eapd €v) 1= Eapd €ms/2)- possible key to this apparent contradiction is that(T) is
directly related to the fraction of time spent in “mobile”
Thus, 0<Eqpfeve)<Eap{eve/2), which means that the regions of configuration space. In contrast, we have concen-
combined system shows a weaker dependenag,grthan a  trated on the durations of the stable, |mmobllg structures. As
single copy. For a reasonable PEL topology, one would exthe consequence of longer and longer residences in deep
pect |dE,f evs)/devs|<1, because barriers should not MBs, the mobile fraction becomes smaller and smaller. Thus,
mount up more than one descends in the PEL. Since th@ne observes a relation betwee(T) andf(T), although
evs-dependence d,,, becomes weaker for larger systems, it i the long trapping times which are the reason for the
it in turn should increase towards smallér As a specula- Slowing down of dynamics.

tion, this might open a way of estimating the size of coop- We further note that the MB concept is not implemented

erative regions. in the INM approach. Supercooled water, e.g., exhibits very
The results shown in Fig. 15, obtained via E¢®. and pronounced MB correlations in the time series of minima,

(7), demonstrate the use of the present work. From PEL bag€Vven for a large system of 216 partic[&g]. Generally, frag-

riers [E<S( eyg)] and thermodynamicEp(eyg :T)] we are Ile glass formers are expected to have a rugged PEL, ie.,

able to produce a reasonable estimate of dynamics. An ovefXhibit extensive superstructures of minifizd]. In view of

all proportionality factor 1#, remains as an adjustable pa- this insight, the success of INM analyses for the latter type of

rameter, since it could not be predicted from PEL structureSYS€mS is quite surprising.

As dlscusse_d in Sec. lll, one may u_pée;T)_ m_stead of VIIl. CONCLUSION
p(ems;T), since they are nearly identical. This is very con-
venient, because upon constructipe; T), no information Our goal in this paper was to shed some light on the

about dynamics is needed. The breakdown of the Arrheniugemperature dependence of the diffusion constant. In our pre-
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vious work[19], metabasins turned out as a useful concepspaceaspects of MB relaxation. Here, the correspondence of
that reduces correlations of subsequent PEL-hopping event§IBs to the cage effect should serve as the guiding principle.
Taking seriously these correlations, the present investigatioAn interesting question along this line would be if some of
went a step further into this direction, by relating the tem-the real-space phenomena found in supercooled liqeids,

perature dependence of relaxation to the depths of these mithe stringlike motion discovered by Donati al.[53]) can be
timinima superstructures. We have shown in this paper that gaced back to energy-landscape features.

guantitative link between PEL structure and dynamics is pos-

sible aboveT.. However, our approach is still phenomeno-

logical at this stage: we are far_from predictiEgpp(eMB) _ ACKNOWLEDGMENTS

from more general PEL properties or even the interaction

potentials. To achieve this is a major challenge, implying a We are pleased to thank M. Fuchs, D.R. Reichman, and
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